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Generative Modeling & Sampling
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Generative Adversarial Network:



Concept: Auto-association



The Encoder-Decoder Framework
• Auto-association (auto-encoding)

– Learn a compressed representation of the input, i.e., word2vec

– Bottleneck layer = meaningful latent space

• Can de-couple encoder & decoder
– Each can be complex, different functions







The Manifold Hypothesis
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Nice consequence: many datasets that you think might require many 
variables/dimensions to describe can actually be explained with rather 
few of them (a subset that forms a sort of local coordinate system of 
the underlying manifold)





Traditional Approaches to Generative Modeling
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Towards Variational Inference
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We take advantage of the following relationship:



Designing a Recognition Model Q(z)
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Designing a Variational Encoder-Decoder
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Neural Variational Inference (NVIL)
• Idea:  Teach neural net to approximate the posterior p(z|x)

– q(z|x) with 'variational parameters' φ 

– One-shot approximate inference 

– Also known as a recognition model

• Construct estimator of the variational (evidence) lower bound (ELBO)

• Can optimize jointly w.r.t. φ jointly with θ -> Stochastic gradient ascent

KL Divergence:

Gaussian KL Divergence:
𝑝 ~ 𝑁(𝜇1,𝜎1)

q ~ 𝑁(𝜇2,𝜎2)

Recall from statistics and information theory:
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The Variational Auto-Encoder
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Issue: Backprop and Sampling
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The Reparameterization Trick



The Reparametrization Trick
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Putting It All Together!
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Putting It All Together!

Why not capture modes (in text) 
with piecewise linear variables?

(Serban & Ororbia, 2016)



VAE Training Algorithm
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VAE Evaluation
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VAE Architectures
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Fantasies/Dreams of the VAE

• VAEs can disentangle potential factors of variation

http://www.dpkingma.com/sgvb_mnist_demo/demo.html
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http://www.dpkingma.com/sgvb_mnist_demo/demo.html


Deep digit 
dreams…
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Issues/Limitations with VAEs

• Images are blurry (compared to models based 
on GANs, for example)

– Result of likelihood objective? (places probability 
mass on training images and nearby points, which 
include blurry images)

• Has tendency to ignore input features that occupy few 
pixels or that cause only small change in brightness of 
pixels (that they occupy)

– Uses only small subset of latent variables? 
(struggles to find enough transformation 
directions to match factorized prior over z)
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DRAW
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The Deep Recurrent 
Attentive Writer

Combining latents, 
variational inference, 
and RNNs

VAE DRAW
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QUESTIONS?


	Slide 1
	Slide 2: Generative Modeling & Sampling
	Slide 3: Concept: Auto-association
	Slide 4: The Encoder-Decoder Framework
	Slide 5
	Slide 6
	Slide 7: The Manifold Hypothesis
	Slide 8
	Slide 9: Traditional Approaches to Generative Modeling
	Slide 10: Towards Variational Inference
	Slide 11: Designing a Recognition Model Q(z)
	Slide 12: Designing a Variational Encoder-Decoder
	Slide 13
	Slide 14
	Slide 17: Neural Variational Inference (NVIL)
	Slide 18: Neural Variational Inference (NVIL)
	Slide 20
	Slide 21: The Variational Auto-Encoder
	Slide 22: Issue: Backprop and Sampling
	Slide 24
	Slide 25: The Reparameterization Trick
	Slide 26: The Reparametrization Trick
	Slide 27: Putting It All Together!
	Slide 28: Putting It All Together!
	Slide 29: VAE Training Algorithm
	Slide 30: VAE Evaluation
	Slide 31: VAE Architectures
	Slide 32: Fantasies/Dreams of the VAE
	Slide 33: Deep digit dreams…
	Slide 34: Issues/Limitations with VAEs
	Slide 35: DRAW
	Slide 36: QUESTIONS?

