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Companion reading:
Chapter 10 of Deep Learning textbook Without “time funnels” or “temporal queues”...



Feedforward Neural Networks (FNNs)

output layer

input layer
hidden layer
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something other than FNNs?




RNNSs process sequential data

» Recurrent Neural Networks are a family of neural networks for
processing sequential data

- RNN and CNN are both specialized architectures

RNN is specialized for processing a sequence of values =V),.. x(*)
Just as CNN is specialized for processing a grid of values such as an image

RNNs can scale to much longer sequences than would be impractical for
networks without sequence-based specialization

RNNs can also process variable-length sequences
. Just as a CNN can scale to images with large width/height and process

. variable size images



The Problem of Long-Term Dependencies

One appeal of RNNs is idea that they might be able to connect previous
information to present task, e.g., using previous video frames might
inform the understanding of present frame.

If RNNs could do this, they would be extremely useful!

But can they? It depends.



The Problem of Long-Term Dependencies

Sometimes, only need to look at recent information to perform present task.

For example, consider a language model trying to predict the next word
based on the previous ones.

If we are trying to predict the last word in “the clouds are in the sky” we
do not need any further context — next word is going to be sky. In these
cases, where gap between relevant information and place that prediction
is required is small, RNNs can learn to use past information



The RNN Building Block



The RNN, Unrolled
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RNN operating on a sequence

- RNNs operate on a sequence that contain vector ¥ with time
step index ¢, ranging from 1to 7
+ Sequence: zV,..,x )
* RNNSs operate on minibatches of sequences of length T
« Some remarks about sequences
+ The steps need not refer to passage of time in the real world
« RNNSs can be applied in two-dimensions across spatial data such as
image
* Even when applied to time sequences, network may have connections

going backwards in time, provided entire sequence is observed before it
IS provided to network



‘Three design patterns of RNNs

1. Produce output at each time step and
have recurrent connections between

hidden units

2. Produce output at each time step and
have recurrent connections only from
output at one time step to hidden units

at next time step

« Less powerful than (1) but easier to train
- Each step can be trained in isolation
« (Greater parallelization during training

3. Recurrent connections between hidden
units that read an entire input
sequence and produce a single output

» Can summarize a sequence and produce a
fixed size representation for further

processing




Computing gradient in RNN using BPTT

Computing the gradient through an RNN is
straightforward

One simply applies the generalized back-propagation
algorithm to the unrolled computational graph.

No specialized algorithms are necessary.

Gradients obtained by back-propagation may then be
used with any general-purpose gradient-based
techniques to train an RNN.



White Board Time!
(Turning MLPs into RNNs)
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Efficient parameterization based on hl=f{hl*1,a(9:0)




Unfolding over Time
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Recurrence similar to
Hidden Markov Model (HMM)
Kalman Filter (KF, EKF, UKF)
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lllustration of Teacher Forcing

+ Teacher Forcing is a training technique applicable to RNNs that
have connections from output to hidden states at next time step

Train time:
We feed the
correct

output y(®
(from teacher)
drawn from the
training set as
input to A1

Train time

Test time:

True output is not known.

We approximate the correct output
4! with the model’s output o(! and
feed the output back to the model

Test time




Srihari

Teacher Forcing

- Models that have recurrent connections from their outputs
leading back to the model may be trained with teacher forcing

+ Teacher forcing during training means

* Instead of summing activations from incoming units (possibly erroneous)
- Each unit sums correct teacher activations as input for the next iteration

» Visualizing effect of teaching forcing

- Imagine that the network is learning to follow a trajectory; it goes astray
(because the weights are wrong) but teacher forcing puts the net back on
Its trajectory by setting the state of all the units to that of teacher's.

(a) Without teacher forcing, trajectory runs astray
(solid lines) while the correct trajectory are the

*o % dotted lines

(b) With teacher forcing trajectory corrected at
a b each step




LSTM Networks

LSTMs also have a chain-like structure, but repeating module has a different
structure; instead of having a single neural network layer, there are four
which interact in a particular way
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The LSTM Building Block

Xt h: Xt h:
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Similarly for i, o,

X, W Cell
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. xt
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" Dashed line indicates time-lag



Gated Recurrent Unit (GRU)

* Asimplified version of the LSTM

— Merges forget and input gate into a single “update” gate
— Merges cell with hidden state

 Has fewer parameters than an LSTM and was shown to outperform LSTM on some
tasks

h.- 1




The GRU Building Block

& : Hadamard product
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The Encoder-Decoder Framework

e Auto-association (auto-encoding)

* Learn a compressed representation of the
input (think of word2vec, except simpler)

* Bottleneck layer = meaningful latent space

* Can de-couple encoder & decoder
e Each can be complex, different functions

(like RNNs)
encode decode
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An Encoder-Decoder or Sequence-to-Sequence RNN

Encoder i Learns to generate an output sequence
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given an input sequence

(... 2"

It consists of an encoder RNN that reads
an input sequence and a decoder ENN
that generates the output sequence

or computes the probability of a given

output sequence)

The final hidden state of the encoder RNN
Is used to compute a fixed size context C'
which represents a semantic summary of
the input sequence and is given as Jnput

. to the decoder




Multi-layer RNNs

* We can design RNNs with multiple hidden layers:

Y1 Y, Y3 Ya Ys Y6

! P11

 Might need to consider exotic modifications: Skip connections across layers, across time, ...



Outputs

Hidden Layers

Inputs

Figure 1: Deep recurrent neural network prediction architecture. The
circles represent network layers, the solid lines represent weighted connections
and the dashed lines represent predictions.



RNN to map a fixed length vector = over sequences Y

Appropriate for tasks such as

image captioning

where a single image is input

which produces a sequence of words
describing the image.

Each element of the observed output
yt) of the observed output sequence
serves both as input (for the current
time step) and during training as target

Vision Language A group of people

Deep CNN Generating Shopping at an
RNN outdoor market.

fruit stand.
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Neural Transformers

* Beyond the RNN?

* Source
https://ai.googleblog.com/20
17/08/transformer-novel-
neural-network.html
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FNNs in disguise!




QUESTIONS?
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