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On Representation Learning
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Companion reading:
Chapter 6-8, & 15 of Deep Learning textbook
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Backpropagation of Errors

White board time!



The Vanishing Gradient Problem

e Solving credit assignment problem with back-
propagation too difficult

— Difficult to know how much importance to accord to
remote inputs (Bengio et al., 1994)

— Information passed through a chain of multiplications
back through network

* Any value slightly less than 1 in hadamard product, and
derivative signal quickly shrinks to useless values (near zero)

— Learning long-term dependencies in temporal
sequences becomes near impossible

 Complementary problem: Exploding gradients

— Any value greater than 1 in hadamard, derivative signal
increases dramatically (numerical overflow)



What do we do with the gradients?

Use a method of parameter adjustment — “update rule”,
“optimizer”
Gradient descent (GD), or mini-batch GD

— Use estimator (i.e., backprop) to get gradient,
then update parameters; online case = stochastic gradient descent (SGD)

Alternative optimizers = shiny toys to make learning even faster
— SGD + momentum, RMSprop, Adam, etc.

http://cs231n.github.io/neural-networks-3/#hyper
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Random Parameter Initializations

e Classical approaches
— Sample from ~U(-a, a), where is a small scalar
— Sample from ~“N(0, a), where is a small standard deviation

* Fan-in-Fan-out (number inputs, number output)

— Calibrate by variances of neuronal activities

* Simple distributional schemes
— Fan-in/Fan-out Uniform
— Fan-in/Fan-out Gaussian (good for ReLU activations)

e Orthogonal Initialization

— Use Singular Value Decomposition (SVD) to find initial weights
* |dentity Initialization / Constraint (for RNNSs)

— Does not always work unless constraint is enforced

* Or otherintelligent methods?

— Greedy layer-wise pre-training (we will go over this later in the course!)



Why Do We Care How Parameters Are Initialized?

o g
* |Initialization affects final performance ]
— Will put closer to some spots in function
space and farther from others ot
* Where we end up in function space B R TR
will often correlate w/ our error
pe rformance Figure 5: 2D visualizations with tSNE of the functions represented by 50 networks with and 50 net-

works without pre-training, as supervised training proceeds over MNIST. See Section 6.3
for an explanation. Color from dark blue to cyan and red indicates a progression in train-
ing iterations (training is longer without pre-training). The plot shows models with 2
hidden layers but results are similar with other depths.

“Why Does Unsupervised Pre-training Help Deep Learning?”, Erhan et al.
2010 http://jmlr.org/papers/volumell/erhan10a/erhan10a.pdf



THE SPACE OF NEURAL ARCHITECTURES
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Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)
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Presentations Next Tuesday

« Topics: Representation Learning

« Paper announcements coming soon (once the two teams
respond)



What is Representation Learning?

* Learn features automatically

— Find a transformation of raw data input to a representation / space
that can be effectively exploited in machine learning tasks

* Can be viewed as complementary to machine learning

— “Automatic” pre-processing (or automated feature engineering)

 What makes one representation better than another?

— Good representation = one that makes a subsequent learning task
easier (choice of representation depends on the choice of
subsequent learning task)

SErEET Feature _ Leamlng
Representation algorithm




Why? Feature Abstraction

* Raw features, such as pixel values of image, viewed as
“low-level” representation of data

— Can be complex & high-dimensional
— Observed variables (“nature”, observed/recorded data)

object models

object parts
(combination
of edges)

* Abstract representations = layers of feature detectors

— Unobserved variables that describe observed variables
* Capture key aspects of data’s underlying stochastic process

* Many concepts can be represented as (strict) hierarchies (such as a
taxonomy of species) = goal of model is to “learn” a plausible,
structured unknown hierarchy

http://www.slideshare.net/roelofp/2014-1021-sicsdinlpg

— Goal: extracting “structure” from“unstructured”/messy data



What might deep representational

models look like?

Gaussian Linear State Space Model
Kalman Filter

2t ~ N (24| Azi—1,0°1)

ye ~ N (ye| Bz, 0.1)
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Latent Gaussian Cox Point Proces

Yij ~ P(cexp(zij;))
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Computer Vision is Hard




How is computer perception done?

Object r D =)
detection
Image Low-level Recognition
vision features
Audio

classification

Low-level Speaker
audio features identification

Helicopter
control

Low-level state
features Action

Helicopter



How is computer perception done?

Object & - = |
detection

C|a5§‘ Problems of hand-tuned features
1. Needs expert knowledge
2. Time-consuming and expensive
veid 3+ Does not generallze to other domains
control e T 7

Low—IeveI state
features Action

Helicopter



In context of a deep ANN:
Training w/ supervised criterion
naturally leads to representation
at every hidden layer (more so
near top hidden layer) taking on
properties that make
discriminative/task-centric
learning easier

Output
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program features
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Rule-based Classic Representation Deep
systems machine learning learning

learning

Linear
classifier/regressor

Representation =
set of transforms
w/in ANN



The Problem of Representation Learning

Representation learning problems face trade-off between preserving as
much information about input (as possible) and attaining nice
properties, i.e., independence of detectors

— Models (supervised or unsupervised) have main training objective but learn a
representation as a “side effect”

Often add constraints to shape representation in some wa

— Density estimation — encourage elements of representation/latent vector z to be
independent (distributions w/ more independences are easier to model)

Offers a pathway to facilitate semi-supervised learning
— Hypothesis: unlabeled data can be used to learn a good representation



Pre-Training: Learning Your Initialization

e General idea:

— Train another model,
i.e., deep belief network =

— Dump its parameters into the
one you care about

— Fine-tune final model

* Unsupervised generative
models were largely useful
for this
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