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Companion reading: 

Chapter 6-8 of Deep Learning textbook



Artificial Neural Networks (ANNs): Neurobiological Motivations

 Human brain = a good candidate learning 
algorithm

 Evidence of layered architectures in neuro-

scientific research (i.e., cortical structures)

 Early success of specialized yet deep 

architectures

 Convolutional Networks, NeoCognitron



Most of machine learning models can be viewed as 
a type of ANN…if you squint hard enough…









Reverse Mode Differentiation

• Application of the chain-rule from 
(vector) calculus

• Can view ANNs at level of processing 
elements (PEs)—neuronal graph
– Follow dot-arrow diagram to get partial 

derivative scalars
– Limited flexibility, but simple to 

understand

• Can view this at lowest level—
computation graph
– Follow graph of operators & get partial 

derivatives using sub-rules (sum rule, 
product rule, etc.)

– Highly flexible
– Tools that do this:

• Theano:  
http://deeplearning.net/software/theano/

• TensorFlow:  https://www.tensorflow.org/
Deep calculus!



Approaches to Differentiation



The Finite Difference Method

9



Backpropagation of Errors

10White board time!



The Vanishing Gradient Problem

• Solving credit assignment problem with back-
propagation too difficult
– Difficult to know how much importance to accord to  

remote inputs (Bengio et al., 1994)

– Information passed through a chain of multiplications  
back through network

• Any value slightly less than 1 in hadamard product, and  
derivative signal quickly shrinks to useless values (near zero)

– Learning long-term dependencies in temporal  
sequences becomes near impossible

• Complementary problem: Exploding gradients
– Any value greater than 1 in hadamard, derivative signal  

increases dramatically (numerical overflow)





Random Parameter Initializations

• Classical approaches

– Sample from ~U(-a, a), where is a small scalar

– Sample from ~N(0, a), where is a small standard deviation

• Fan-in-Fan-out (number inputs, number output)

– Calibrate by variances of neuronal activities

• Simple distributional schemes

– Fan-in/Fan-out Uniform

– Fan-in/Fan-out Gaussian  (good for ReLU activations)

• Orthogonal Initialization

– Use Singular Value Decomposition (SVD) to find initial weights

• Identity Initialization / Constraint (for RNNs)

– Does not always work unless constraint is enforced

• Or other intelligent methods?

– Greedy layer-wise pre-training (we will go over this later in the course!)



Why Do We Care How Parameters Are Initialized?

• Initialization affects final performance

– Will put closer to some spots in function 
space and farther from others

• Where we end up in function space 
will often correlate w/ our error 
performance

“Why Does Unsupervised Pre-training Help Deep Learning?”, Erhan et al. 
2010 http://jmlr.org/papers/volume11/erhan10a/erhan10a.pdf



Or, Just Wait Longer…

• Even with poor initialization, just 
wait a really long time….

• Patience + really good hardware

• So one answer = more hardware



PARAMETER OPTIMIZATION

How to make those gradients work for you!



Optimization Schemes
• Steepest (mini-batch) gradient descent

– Use an estimator (i.e., backprop) to get gradient, 
then update parameters; online case = stochastic gradient descent (SGD)

• Alternative optimizers = shiny toys to make learning even faster





Steepest Gradient Descent

• Simplest update rule

• Combine with early stopping

– Early stopping = tracking loss/error on validation set

– A simple form of regularization (weights will be smaller)



Simple Momentum

• Maintains rolling average of previous gradients

– Smooths out descent of minimization algorithm

– Prevent “bouncing around” on loss/error surface

• Many variants: momentum, Nesterov’s Accelerated Gradient 
(NAG), etc.



Adaptive Learning Rates
• Learning rate per parameter → empirically improves convergence

• AdaGrad: 

– Weights that receive high gradients → effective learning rate reduced

– Weights that receive small/infrequent updates → effective learning rate increased

• RMSprop:  
– Reduces AdaGrad’s aggressive, monotonically decreasing learning rate

– Moving average of squared gradients

• ADAM:  RMSprop + momentum (also corrects for bias towards zero at 
start of training)
– Very common in modern optimization of deep architectures

AdaGrad

RMSProp



Race of the Optimizers!

http://cs231n.github.io/neural-networks-3/#hyper



REGULARIZATION OF PARAMETERS

Every new idea is really yet another regularizer…



Drop-out & Co-Adaptation
• Feature coadaptation:  during learning, weights settle into their w/in network

– Neuronal weights tuned for specific features = some specialization (“neuronal context”)

– Neighboring neurons end up relying on this specialization → could result in a fragile model 
too specialized to the training data

• Each iteration, omit some units w/ given probability (binary masks)

– At inference time, simply multiply activations by probability

• In single hidden layer model, equivalent to Bayesian model averaging

• A form of architectural regularization

– Controls for overfitting

– Could also drop edges (i.e., Drop-Connect)

Note: You might find that 
this is quite similar to the 
classical Optimal Brain 
Surgeon & Damage 
algorithms…
…you would be right!



Batch Normalization & Covariate Shift
Covariate Shift = change in the distribution of a function’s domain

When your inputs change on you, your algorithm can’t deal with it
This happens within layers of a deep network

Solution: standardize internal layers!
Will need to learn how to scale & shift
Done on a per-activation basis (mini-batch statistics = mean & variance)
Test-time:  Obtain unbiased estimate of mean 
& variance on entire training sample

Speeds up learning!

Layer normalization → for recurrent 

neural networks (RNNs)



Non-Standard Activations

Linear Rectified Unit (Relu)
Not smooth / not differentiable everywhere, Benefit:  Hard sparsity
Issues:  Dead units, explosive weight updates
Parametric Relu (PRelu) & Leaky Relu:  Learn the slope of the activation function 



Skip Connections

A classical idea
Add short-circuiting to architecture
Can improve gradient flow

Residual Networks:
The value of identity connections

Highway Networks
More complex gating (how much of input 
passes through, how much is 
transformed)

https://arxiv.org/pdf/1308.0850v5.pdf

https://arxiv.org/abs/1512.03385



TUNING A DEEP ARCHITECTURE

On the human-in-the-loop…



Manual & Exhaustive Search
Manual Search

Fast if you know what you are doing!
Explore a few configurations, based on 
literature/heuristics
Select lowest validation loss configuration

Grid Search
Compose an n-dimensional hypercube, where along 
each axis is a hyper-parameter 
(length determined by max & min values to explore)
Exhaustively calculate loss/error for each configuration (or combination of meta-
parameter values) in hypercube

Choose lowest error/minimal loss configuration as optimal model
Loss/error is calculated on a held-out validation/development set (or in held-out set in 
cross-fold validation schemes)

Will ultimately find optimal model (depends on coarseness of grid-search)
Takes long time!

Deep tuning!



Random Search

Draw k sample configurations from hypercube & calculate 

validation loss for each (w/o replacement)
Repeat T trials, can use optimal of each trial to inform subsequent trials
Could “guide” or “target” next set of random samples based on best last 
found point (a guided stochastic search)

Surprisingly effective (over manual search) & faster than grid search



Bayesian Optimization: Meta Machine Learning

Use machine learning to do your research for you…
Sequential Model Optimization (SMO)
Gaussian Processes for surface-response modeling
Gradient-based: Use another ANN

How do we tune this higher-level 
parametric model?
Meta-meta-meta-….-machine learning??

High-level idea:
Build a meta-model (w/ some prior that 
encodes intuition about hyper-parameter space)
Draw samples from space (i.e., run few model configurations)
Update meta-model using these samples
Meta-model selects next best point to evaluate

Balancing criterion, i.e., minimal error & minimal compute time
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Deep Thinking!

It is a matter of posing the problem
What is the low-level representation of your sample? 
(i.e., low-level features, inputs, or sensors)
Is there an output we are interested in?

Regression: a real-valued target
Categorization: a discrete target

How much data do you have?
More data is better! (MNIST is 60K)
Only a small sample? 
Go Bayesian Neural Networks!

What kind of hardware do you have?
Multi-CPU settings
GPUs
Specialized hardware?
FPGAs, TPUs?

Deep digit recognition!



THE SPACE OF NEURAL ARCHITECTURES

On the plethora of model structures…



http://www.asimovinstitute.org/neural-network-zoo/

Deep zoo!



http://www.asimovinstitute.org/neural-network-zoo/





Read for This Thursday

• Read Chapter 15 of Deep Learning textbook

– https://www.deeplearningbook.org/

https://www.deeplearningbook.org/


36

QUESTIONS?
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