
On Deep Learning

Alexander G. Ororbia II

Introduction to Machine Learning

CSCI-736

1/24/2023

Companion reading:

Chapter 6-8 of Deep Learning textbook

Artificial Neural Networks (ANNs): Neurobiological Motivations

 Human brain = a good candidate learning
algorithm

 Evidence of layered architectures in neuro-

scientific research (i.e., cortical structures)

 Early success of specialized yet deep

architectures

 Convolutional Networks, NeoCognitron

Most of machine learning models can be viewed as
a type of ANN…if you squint hard enough…

Reverse Mode Differentiation

• Application of the chain-rule from
(vector) calculus

• Can view ANNs at level of processing
elements (PEs)—neuronal graph
– Follow dot-arrow diagram to get partial

derivative scalars
– Limited flexibility, but simple to

understand

• Can view this at lowest level—
computation graph
– Follow graph of operators & get partial

derivatives using sub-rules (sum rule,
product rule, etc.)

– Highly flexible
– Tools that do this:

• Theano:
http://deeplearning.net/software/theano/

• TensorFlow: https://www.tensorflow.org/
Deep calculus!

Approaches to Differentiation

The Finite Difference Method

9

Backpropagation of Errors

10White board time!

The Vanishing Gradient Problem

• Solving credit assignment problem with back-
propagation too difficult
– Difficult to know how much importance to accord to

remote inputs (Bengio et al., 1994)

– Information passed through a chain of multiplications
back through network

• Any value slightly less than 1 in hadamard product, and
derivative signal quickly shrinks to useless values (near zero)

– Learning long-term dependencies in temporal
sequences becomes near impossible

• Complementary problem: Exploding gradients
– Any value greater than 1 in hadamard, derivative signal

increases dramatically (numerical overflow)

Random Parameter Initializations

• Classical approaches

– Sample from ~U(-a, a), where is a small scalar

– Sample from ~N(0, a), where is a small standard deviation

• Fan-in-Fan-out (number inputs, number output)

– Calibrate by variances of neuronal activities

• Simple distributional schemes

– Fan-in/Fan-out Uniform

– Fan-in/Fan-out Gaussian (good for ReLU activations)

• Orthogonal Initialization

– Use Singular Value Decomposition (SVD) to find initial weights

• Identity Initialization / Constraint (for RNNs)

– Does not always work unless constraint is enforced

• Or other intelligent methods?

– Greedy layer-wise pre-training (we will go over this later in the course!)

Why Do We Care How Parameters Are Initialized?

• Initialization affects final performance

– Will put closer to some spots in function
space and farther from others

• Where we end up in function space
will often correlate w/ our error
performance

“Why Does Unsupervised Pre-training Help Deep Learning?”, Erhan et al.
2010 http://jmlr.org/papers/volume11/erhan10a/erhan10a.pdf

Or, Just Wait Longer…

• Even with poor initialization, just
wait a really long time….

• Patience + really good hardware

• So one answer = more hardware

PARAMETER OPTIMIZATION

How to make those gradients work for you!

Optimization Schemes
• Steepest (mini-batch) gradient descent

– Use an estimator (i.e., backprop) to get gradient,
then update parameters; online case = stochastic gradient descent (SGD)

• Alternative optimizers = shiny toys to make learning even faster

Steepest Gradient Descent

• Simplest update rule

• Combine with early stopping

– Early stopping = tracking loss/error on validation set

– A simple form of regularization (weights will be smaller)

Simple Momentum

• Maintains rolling average of previous gradients

– Smooths out descent of minimization algorithm

– Prevent “bouncing around” on loss/error surface

• Many variants: momentum, Nesterov’s Accelerated Gradient
(NAG), etc.

Adaptive Learning Rates
• Learning rate per parameter → empirically improves convergence

• AdaGrad:

– Weights that receive high gradients → effective learning rate reduced

– Weights that receive small/infrequent updates → effective learning rate increased

• RMSprop:
– Reduces AdaGrad’s aggressive, monotonically decreasing learning rate

– Moving average of squared gradients

• ADAM: RMSprop + momentum (also corrects for bias towards zero at
start of training)
– Very common in modern optimization of deep architectures

AdaGrad

RMSProp

Race of the Optimizers!

http://cs231n.github.io/neural-networks-3/#hyper

REGULARIZATION OF PARAMETERS

Every new idea is really yet another regularizer…

Drop-out & Co-Adaptation
• Feature coadaptation: during learning, weights settle into their w/in network

– Neuronal weights tuned for specific features = some specialization (“neuronal context”)

– Neighboring neurons end up relying on this specialization → could result in a fragile model
too specialized to the training data

• Each iteration, omit some units w/ given probability (binary masks)

– At inference time, simply multiply activations by probability

• In single hidden layer model, equivalent to Bayesian model averaging

• A form of architectural regularization

– Controls for overfitting

– Could also drop edges (i.e., Drop-Connect)

Note: You might find that
this is quite similar to the
classical Optimal Brain
Surgeon & Damage
algorithms…
…you would be right!

Batch Normalization & Covariate Shift
Covariate Shift = change in the distribution of a function’s domain

When your inputs change on you, your algorithm can’t deal with it
This happens within layers of a deep network

Solution: standardize internal layers!
Will need to learn how to scale & shift
Done on a per-activation basis (mini-batch statistics = mean & variance)
Test-time: Obtain unbiased estimate of mean
& variance on entire training sample

Speeds up learning!

Layer normalization → for recurrent

neural networks (RNNs)

Non-Standard Activations

Linear Rectified Unit (Relu)
Not smooth / not differentiable everywhere, Benefit: Hard sparsity
Issues: Dead units, explosive weight updates
Parametric Relu (PRelu) & Leaky Relu: Learn the slope of the activation function

Skip Connections

A classical idea
Add short-circuiting to architecture
Can improve gradient flow

Residual Networks:
The value of identity connections

Highway Networks
More complex gating (how much of input
passes through, how much is
transformed)

https://arxiv.org/pdf/1308.0850v5.pdf

https://arxiv.org/abs/1512.03385

TUNING A DEEP ARCHITECTURE

On the human-in-the-loop…

Manual & Exhaustive Search
Manual Search

Fast if you know what you are doing!
Explore a few configurations, based on
literature/heuristics
Select lowest validation loss configuration

Grid Search
Compose an n-dimensional hypercube, where along
each axis is a hyper-parameter
(length determined by max & min values to explore)
Exhaustively calculate loss/error for each configuration (or combination of meta-
parameter values) in hypercube

Choose lowest error/minimal loss configuration as optimal model
Loss/error is calculated on a held-out validation/development set (or in held-out set in
cross-fold validation schemes)

Will ultimately find optimal model (depends on coarseness of grid-search)
Takes long time!

Deep tuning!

Random Search

Draw k sample configurations from hypercube & calculate

validation loss for each (w/o replacement)
Repeat T trials, can use optimal of each trial to inform subsequent trials
Could “guide” or “target” next set of random samples based on best last
found point (a guided stochastic search)

Surprisingly effective (over manual search) & faster than grid search

Bayesian Optimization: Meta Machine Learning

Use machine learning to do your research for you…
Sequential Model Optimization (SMO)
Gaussian Processes for surface-response modeling
Gradient-based: Use another ANN

How do we tune this higher-level
parametric model?
Meta-meta-meta-….-machine learning??

High-level idea:
Build a meta-model (w/ some prior that
encodes intuition about hyper-parameter space)
Draw samples from space (i.e., run few model configurations)
Update meta-model using these samples
Meta-model selects next best point to evaluate

Balancing criterion, i.e., minimal error & minimal compute time

Bayesian Optimization: Meta Machine Learning

Use machine learning to do your research for you…
Sequential Model Optimization (SMO)
Gaussian Processes for surface-response modeling
Gradient-based: Use another ANN

How do we tune this higher-level
parametric model?
Meta-meta-meta-….-machine learning??

High-level idea:
Build a meta-model (w/ some prior that
encodes intuition about hyper-parameter space)
Draw samples from space (i.e., run few model configurations)
Update meta-model using these samples
Meta-model selects next best point to evaluate

Balancing criterion, i.e., minimal error & minimal compute time

Deep Thinking!

It is a matter of posing the problem
What is the low-level representation of your sample?
(i.e., low-level features, inputs, or sensors)
Is there an output we are interested in?

Regression: a real-valued target
Categorization: a discrete target

How much data do you have?
More data is better! (MNIST is 60K)
Only a small sample?
Go Bayesian Neural Networks!

What kind of hardware do you have?
Multi-CPU settings
GPUs
Specialized hardware?
FPGAs, TPUs?

Deep digit recognition!

THE SPACE OF NEURAL ARCHITECTURES

On the plethora of model structures…

http://www.asimovinstitute.org/neural-network-zoo/

Deep zoo!

http://www.asimovinstitute.org/neural-network-zoo/

Read for This Thursday

• Read Chapter 15 of Deep Learning textbook

– https://www.deeplearningbook.org/

https://www.deeplearningbook.org/

36

QUESTIONS?

	Slide 1: On Deep Learning
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Reverse Mode Differentiation
	Slide 8: Approaches to Differentiation
	Slide 9: The Finite Difference Method
	Slide 10: Backpropagation of Errors
	Slide 11: The Vanishing Gradient Problem
	Slide 12
	Slide 13: Random Parameter Initializations
	Slide 14: Why Do We Care How Parameters Are Initialized?
	Slide 15: Or, Just Wait Longer…
	Slide 16: Parameter Optimization
	Slide 17: Optimization Schemes
	Slide 18
	Slide 20: Steepest Gradient Descent
	Slide 21: Simple Momentum
	Slide 22: Adaptive Learning Rates
	Slide 23: Race of the Optimizers!
	Slide 24: Regularization of Parameters
	Slide 27: Drop-out & Co-Adaptation
	Slide 28: Batch Normalization & Covariate Shift
	Slide 29: Non-Standard Activations
	Slide 30: Skip Connections
	Slide 31: Tuning A deep Architecture
	Slide 32: Manual & Exhaustive Search
	Slide 33: Random Search
	Slide 34: Bayesian Optimization: Meta Machine Learning
	Slide 35: Bayesian Optimization: Meta Machine Learning
	Slide 36: Deep Thinking!
	Slide 37: The space of Neural Architectures
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Read for This Thursday
	Slide 42: QUESTIONS?

