"..L\,\".I:Illh'llr"ni,:l.“

. _-.H_"." T LITE rJ{.

R-1-T

S

'’ i
oo

On Deep Learning

Alexander G. Ororbia Il
Introduction to Machine Learning
CSCI-736
1/24/2023

Companion reading:
Chapter 6-8 of Deep Learning textbook

Artificial Neural Networks (ANNs): Neurobiological Moftivations

» Human brain = a good candidate learning
algorithm

» Evidence of layered architectures in neuro-
scientific research (i.e., cortical structures)

» Early success of specialized yet deep
architectures

» Convolutional Networks, NeoCognitron

axon of
previous
neuron

daxon

neuron cell body

nucleus /

electrical
signal

dendrites

NOT SURE IF MAGHINE LEARNING

OR JUST ANOTHER NEURAL NETWORK

E) fix)
T Hi(x) %
©0000000000)
eloleolelek! QOO0 « OSCO0) »
(a) Linear model (b) Single layer (¢) Kernel SVM
architecture neural network architecture
architecture

Most of machine learning models can be viewed as
a type of ANN...if you squint hard enough...

Diagonal

Line

R AN
> 9 R
RO
ofofoeYeole}o)oo)e
By d DA AN Sl

Z7A

o
ot

‘0 .‘0.

sy

e

'\." | \v..

(i)
< (&)
I WAA vwmv
® @

-

-

D54

(2]
L

Sae s eSS

N DA AN

A Recipe for

Background : :
® Machine Learning

1. Given training data:

{m’ia Y, ?J',\;l

4. Train with SGD:

(take small steps
opposite the gradient)

0t = 9 — ,V(fo(xi),y,)

— VA fo(x:), y;)

Reverse Mode Differentiation

* Application of the chain-rule from
(vector) calculus

* Can view ANNs at level of processing
elements (PEs)—neuronal graph

— Follow dot-arrow diagram to get partial
derivative scalars

— Limited flexibility, but simple to
understand

* Canview this at lowest level—
computation graph
— Follow graph of operators & get partial
derivatives using sub-rules (sum rule,
product rule, etc.)
— Highly flexible
— Tools that do this:

* Theano:
http://deeplearning.net/software/theano/

* TensorFlow: https://www.tensorflow.org/

0.5

N
0.5

N
0.5

Deep calculus!

—
.

Approaches to Differentiation

Finite Difference Method
- Pro: Great for testing implementations of backpropagation
- Con: Slow for high dimensional inputs / outputs
- Required: Ability to call the function f(x) on any input x
Symbolic Differentiation
- Note: The method you learned in high-school
- Note: Used by Mathematica / Wolfram Alpha / Maple
- Pro: Yields easily interpretable derivatives
- Con: Leads to exponential computation time if not carefully implemented
- Required: Mathematical expression that defines f(x)
Automatic Differentiation - Reverse Mode
- Note: Called Backpropagation when applied to Neural Nets

- Pro: Computes partial derivatives of one output f(x), with respect to all inputs x; in time proportional
to computation of f(x)

- Con: Slow for high dimensional outputs (e.g. vector-valued functions)
- Required: Algorithm for computing f(x)

Automatic Differentiation - Forward Mode
- Note: Easy to implement. Uses dual numbers.

- Pro: Computes partial derivatives of all outputs f(x), with respect to one input x; in time proportional
to computation of f(x)

- Con: Slow for high dimensional inputs (e.g. vector-valued x)
- Required: Algorithm for computing f(x)

The Finite Difference Method

The centered finite difference approximation is:

0

df(x)

= lim
h —=0

f(z +h) — f(z)

JO+e-d;)—JO—¢€-d;))

|
5.7 (0) ~

where d; is a 1-hot vector consisting of all zeros except for the ith

entry of d;, which has value 1.

Notes:

» Suffers from issues of
floating point precision, in
practice

* Typically only appropriate
to use on small examples
with an appropriately
chosen epsilon

A

Backpropagation of Errors

White board time!

The Vanishing Gradient Problem

e Solving credit assignment problem with back-
propagation too difficult

— Difficult to know how much importance to accord to
remote inputs (Bengio et al., 1994)

— Information passed through a chain of multiplications
back through network

* Any value slightly less than 1 in hadamard product, and
derivative signal quickly shrinks to useless values (near zero)

— Learning long-term dependencies in temporal
sequences becomes near impossible

 Complementary problem: Exploding gradients

— Any value greater than 1 in hadamard, derivative signal
increases dramatically (numerical overflow)

Random Parameter Initializations

e Classical approaches
— Sample from ~U(-a, a), where is a small scalar
— Sample from ~“N(0, a), where is a small standard deviation

* Fan-in-Fan-out (number inputs, number output)

— Calibrate by variances of neuronal activities

* Simple distributional schemes
— Fan-in/Fan-out Uniform
— Fan-in/Fan-out Gaussian (good for ReLU activations)

e Orthogonal Initialization

— Use Singular Value Decomposition (SVD) to find initial weights
* |dentity Initialization / Constraint (for RNNSs)

— Does not always work unless constraint is enforced

* Or otherintelligent methods?

— Greedy layer-wise pre-training (we will go over this later in the course!)

Why Do We Care How Parameters Are Initialized?

o g
* |Initialization affects final performance]
— Will put closer to some spots in function
space and farther from others ot
* Where we end up in function space B R TR
will often correlate w/ our error
pe rformance Figure 5: 2D visualizations with tSNE of the functions represented by 50 networks with and 50 net-

works without pre-training, as supervised training proceeds over MNIST. See Section 6.3
for an explanation. Color from dark blue to cyan and red indicates a progression in train-
ing iterations (training is longer without pre-training). The plot shows models with 2
hidden layers but results are similar with other depths.

“Why Does Unsupervised Pre-training Help Deep Learning?”, Erhan et al.
2010 http://jmlr.org/papers/volumell/erhan10a/erhan10a.pdf

Or, Just Wait Longer...

* Even with poor initialization, just
wait a really long time....

e Patience + really good hardware
e So one answer = more hardware

= <
W % 3 %Ue o
T v N
t Vi pan 7 \
.) \ AR y rad 8
b « X s 4
i v > 4
N\ Y :
’%r,:‘ ~ =i

PARAMETER OPTIMIZATION

Optimization Schemes

e Steepest (mini-batch) gradient descent

— Use an estimator (i.e., backprop) to get gradient,
then update parameters; online case = stochastic gradient descent (SGD)

e Alternative optimizers = shiny toys to make learning even faster

while T/
weights grad = evaluate gradient(loss fun, data, weights)
Landscape image is CCO 1.0 public domain weights += - step_size * weights_grad # perfor par y

Walking man image is CCO 1.0 public domain

Global maxima

6\

L = Local maxima
44 - ' W .

\\‘<;';':{. 775

M7 IO\ :

2y = =" . 4 ’ ‘
: o l \ZZ\\ le V Y LA = . e
— «:: :1::;" f /'{ \ @ ‘ X)% ‘/,“\\\v/g"@‘;Q‘;‘\‘;\;\f .:_.:‘:':‘ o
= OV
- ‘\\Q y by

= Y = =
<=5\ o\

\}\3‘1\\\ e

-
" 3

y

Steepest Gradient Descent

e Simplest update rule
* Combine with early stopping

— Early stopping = tracking loss/error on validation set
— A simple form of regularization (weights will be smaller)

x += — learning rate * dx

Simple Momentum

* Maintains rolling average of previous gradients
— Smooths out descent of minimization algorithm
— Prevent “bouncing around” on loss/error surface

* Many variants: momentum, Nesterov’s Accelerated Gradient
(NAG), etc.

v = mu * v — learning rate * dx

X = v

Adaptive Learning Rates

* Learning rate per parameter = empirically improves convergence
AdaGrad:

— Weights that receive high gradients = effective learning rate reduced

— Weights that receive small/infrequent updates - effective learning rate increased
RMSprop:

— Reduces AdaGrad’s aggressive, monotonically decreasing learning rate

— Moving average of squared gradients

ADAM: RMSprop + momentum (also corrects for bias towards zero at
start of training)

— Very common in modern optimization of deep architectures

cache = decay rate * cache + (1 - decay rate) * dx¥*2
x += — learning rate * dx [/ (np.sgrt(cache) + eps) RMSProp
cache += dx**Z AdaGrad

x += - learning_rate * dx [f (np.sgrt (cache) + ep=)

Race of the Optimizers!

2
%
557

http://cs231n.github.io/neural-networks-3/#hyper

%0
/"';"l" s
LAY
K
X
Yo% O::':":
5% (X7
'?9@%*'

\\\ e SGD s — SGD
] == Momentum [- Momentum
—— NAG = - NAG
- Adagrad //’/’,”,’,'////',’,”—'I/'/’, 1% - Adagrad
Adadelta /’,,,,,,,,,;,/,',',',';z,:,:,';l;;',','gi,l,j ,’I,jg,g Adadelta
G AL 4
Rmsprop 4 Z s Rmsprop

SRR
':',/lll
9,

1.0

REGULARIZATION OF PARAMETERS

Drop-out & Co-Adaptation come ™
pisO

* Feature coadaptation: during learning, weights settle into their w/in network
— Neuronal weights tuned for specific features = some specialization (“neuronal context”)

— Neighboring neurons end up relying on this specialization = could result in a fragile model
too specialized to the training data

* Each iteration, omit some units w/ given probability (binary masks)
— At inference time, simply multiply activations by probability

* Insingle hidden layer model, equivalent to Bayesian model averaging

A form of architectural regularization
— Controls for overfitting
— Could also drop edges (i.e., Drop-Connect)

Note: You might find that

this is quite similar to the
classical Optimal Brain
Surgeon & Damage
w PW .
. algorithms...

Present with Always .
...you would be right!

probability p present

(a) Standard Neural Net (b) After applying dropout. (c) At training time (d) At test time

Batch Normalization & Covariate Shift

Covariate Shift = change in the distribution of a function’s domain
When your inputs change on you, your algorithm can’t deal with it
This happens within layers of a deep network

Solution: standardize internal layers!
Will need to learn how to scale & shift
Done on a per-activation basis (mini-batch statistics = mean & variance)
Test-time: Obtain unbiased estimate of mean
& variance on entire training sample

Speeds up learning!

Layer normalization - for recurrent Input: Values of x over a mini-batch: B = {&, . };
neural networks (RNNSs) Parameters to be leamed: -, §
Output: {y; = BN, 5(z;)}
1 Tl .
HE — ; T M mini-batch mean
2 i Tl - 2 I I_ I
R - 2[;:, HE) / mini-batch vanance
i L HE /f normalize
V D’BE + €
y; « ~r; + 3 = BN, g(x;) [/ scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation = over a mini-batch.

Non-Standard Activations

Sigmoid TanH RelLU

12

1.0 f(z) =
08

1+e*
06
04
0.2

0.0

-0.2 -15 -2
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

Linear Rectified Unit (Relu)

Not smooth / not differentiable everywhere, Benefit: Hard sparsity
Issues: Dead units, explosive weight updates
Parametric Relu (PRelu) & Leaky Relu: Learn the slope of the activation function

&

i Vi = @4iTj;

I
ReLLU Leaky ReLU/PReLU Randomized Leaky ReLU

Skip Connections

A classical idea

Add short-circuiting to architecture
Can improve gradient flow

Hidden Layers

Residual Networks:

The value of identity connections

Inputs

Figure 1: Deep recurrent neural network prediction architecture. The
circles represent network layers, the solid lines represent weighted connections

H ig hW ay N etWO rkS and the dashed lines represent predictions.

More complex gating (how much of input
passes through, how much is

https://arxiv.org/pdf/1308.0850v5.pdf

X

transformed) +
waahght layer
_F[.x::l L 2 rEIu x
waahght layer iddentity

Figure 2. Residual learming: a building block.

https://arxiv.org/abs/1512.03385

TUNING A DEEP ARCHITECTURE

Manual & Exhaustive Search

Manual Search
Fast if you know what you are doing!
Explore a few configurations, based on
literature/heuristics
Select lowest validation loss configuration

Grid Search

Compose an n-dimensional hypercube, where along
each axis is a hyper-parameter

(length determined by max & min values to explore)
Exhaustively calculate loss/error for each configuration (or combination of meta-
parameter values) in hypercube

Choose lowest error/minimal loss configuration as optimal model

Loss/error is calculated on a held-out validation/development set (or in held-out set in
cross-fold validation schemes)

Will ultimately find optimal model (depends on coarseness of grid-search)
Takes long time!

Deep tuning!

Random Search

Draw k sample configurations from hypercube & calculate

validation loss for each (w/o replacement)
Repeat T trials, can use optimal of each trial to inform subsequent trials
Could “guide” or “target” next set of random samples based on best last
found point (a guided stochastic search)

Surprisingly effective (over manual search) & faster than grid search

Grid Layout Random Layout

Unimportant parameter

Unimportant parameter

Important parameter Important parameter

Bayesian Optimization: Meta Machine Learning

Use machine learning to do your research for you...
Sequential Model Optimization (SMO)
Gaussian Processes for surface-response modeling

Gradient-based: Use another ANN

How do we tune this higher-level
parametric model?
Meta-meta-meta-....-machine learning??

High-level idea:
Build a meta-model (w/ some prior that
encodes intuition about hyper-parameter space)
Draw samples from space (i.e., run few model configurations)
Update meta-model using these samples

Meta-model selects next best point to evaluate
Balancing criterion, i.e., minimal error & minimal compute time

Bayesian Optimization: Meta Machl earning

Gaussian Processss
\ X0

g e

Deep Thinking!

It is @ matter of posing the problem
What is the low-level representation of your sample?
(i.e., low-level features, inputs, or sensors)
Is there an output we are interested in?

Regression: a real-valued target
Categorization: a discrete target

How much data do you have?
More data is better! (MNIST is 60K)
Only a small sample?

Go Bayesian Neural Networks!

What kind of hardware do you have?
Multi-CPU settings
GPUs
Specialized hardware?
FPGAs, TPUs?

Deep digit recognition!

THE SPACE OF NEURAL ARCHITECTURES

I::I Backfed Input Cell

Inpul Cell

f':x Moisy Input Cell
) Hidden Cel.

. Prohablistic Hidden Call

. Lpiking Hidden Cell

. Cutput Cell

@ matchinput Output Cell
. Recurrent Call
. Mprnry Cell

. Cifferent Mamary Cell

' -_ Kermel

I:I Comvalution or Pool

Markow Chain (MO

Hopfield Metwark (HM) Bolizmann Mzachine (BM) Restricted 30 (RER)

A mostly complete chart of Deep zoo0!

Neural Networks ...

Wb Focio wan Wean - asimoinsotute.org

Percoptrnn (P Foncl Forarard (FF Radial Basis Network (REF] L

S Se® S

Recurrent Meural Metwork (RRR) Lang # Short Term Memory (LSTM) - Gated Recurrent Unit (GRUD
—_ 3, n— L L

Sparse AE (SAE)

Autc Encader {AE) Wariational AE (WAE) Denaising &2 (DAE)

- e,

Vi
- Ay LY
w@.

Deep Belief Netwarlk (DEM)

SN PP,

http://www.asimovinstitute.org/neural-network-zoo/

Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

0
el
X 0
X0

_

Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)

N7 N N N
AWAWAWA WA

Deep Residual Network (DRN) Kohonen Network (KN) Support Vector Machine (SYM) Neural Turing Machine (NTM)

i e
_
e
- _

http://www.asimovinstitute.org/neural-network-zoo/

SUPERVISED

b e
JNCSUTICLC
T N e g)

Read for This Thursday

 Read Chapter 15 of Deep Learning textbook
— https://www.deeplearningbook.org/

https://www.deeplearningbook.org/

	Slide 1: On Deep Learning
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Reverse Mode Differentiation
	Slide 8: Approaches to Differentiation
	Slide 9: The Finite Difference Method
	Slide 10: Backpropagation of Errors
	Slide 11: The Vanishing Gradient Problem
	Slide 12
	Slide 13: Random Parameter Initializations
	Slide 14: Why Do We Care How Parameters Are Initialized?
	Slide 15: Or, Just Wait Longer…
	Slide 16: Parameter Optimization
	Slide 17: Optimization Schemes
	Slide 18
	Slide 20: Steepest Gradient Descent
	Slide 21: Simple Momentum
	Slide 22: Adaptive Learning Rates
	Slide 23: Race of the Optimizers!
	Slide 24: Regularization of Parameters
	Slide 27: Drop-out & Co-Adaptation
	Slide 28: Batch Normalization & Covariate Shift
	Slide 29: Non-Standard Activations
	Slide 30: Skip Connections
	Slide 31: Tuning A deep Architecture
	Slide 32: Manual & Exhaustive Search
	Slide 33: Random Search
	Slide 34: Bayesian Optimization: Meta Machine Learning
	Slide 35: Bayesian Optimization: Meta Machine Learning
	Slide 36: Deep Thinking!
	Slide 37: The space of Neural Architectures
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Read for This Thursday
	Slide 42: QUESTIONS?

