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Visualizing Types of Learning
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Unsupervised 
learning

Semi-supervised 
learning



• Supervised learning

A Typical Supervised Learning 
Pipeline
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• Unsupervised learning

A Typical Unsupervised Learning 
Pipeline
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ML in Practice
• Understanding domain, prior knowledge, and 

goals
• Data integration, selection, cleaning,

pre-processing, etc.
• Learning models
• Interpreting results
• Consolidating and deploying discovered 

knowledge
• Loop
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First, let there be data!
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• Training = the process of making the system able to learn
• Testing = the process of seeing how well the system learned

– Simulates “real world” usage
– Training set and testing set come from the same distribution
– Need to make some assumptions or bias

• Deployment = actually using the learned system in practice

Training and Testing
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Generalization

• How well does a learned model generalize from 
the data it was trained on to a new test set?

Training set (labels known) Test set (labels 
unknown)

Slide credit: L. Lazebnik 12



Generalization
• Components of generalization error 

– Bias: how much the average model over all training sets differ 
from the true model?

• Error due to inaccurate assumptions/simplifications made by 
the model

– Variance: how much models estimated from different training 
sets differ from each other

• Underfitting: model is too “simple” to represent all the 
relevant class characteristics
– High bias and low variance
– High training error and high test error

• Overfitting: model is too “complex” and fits irrelevant 
characteristics (noise) in the data
– Low bias and high variance
– Low training error and high test error

Slide credit: L. Lazebnik 13
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No Free Lunch Theorem
You can only get generalization through assumptions.  No one algorithm will 
solve all problems (some will work better than others in some instances).
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Bias-Variance Trade-off

• Models with too few 
parameters are 
inaccurate because of a 
large bias (not enough 
flexibility)

• Models with too many 
parameters are 
inaccurate because of a 
large variance (too much 
sensitivity to the sample)

Slide credit: L. Lazebnik 16



Bias-Variance Trade-off: 
Underfitting & Overfitting
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Test error
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Bias-Variance Trade-off: Effect 
of Sample Size

Many training examples

Few training examples
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Effect of Training Size on 
Generalization Error
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Fixed prediction model
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The “Perfect” Classification Algorithm

• Objective function: encodes the right loss for the problem

• Parameterization: makes assumptions that fit the problem

• Regularization: right level of regularization for amount of 
training data (consider bias-variance tradeoff)

• Training algorithm: can find parameters that maximize 
objective on training set

• Inference algorithm: can solve for the objective function in 
evaluation
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Remember…
• No classifier is inherently 

better than any other: you 
need to make assumptions to 
generalize

• Three kinds of error
– Inherent: unavoidable
– Bias: due to over-simplifications
– Variance: due to inability to 

perfectly estimate parameters 
from limited data

22



How to Reduce Variance?

• Choose a simpler classifier
– Occam’s Razor:  Among competing hypotheses, 

the one with the fewest assumptions should be 
selected.

• Regularize the parameters
– Think of L1/L2 penalties in regression
– Think of Laplacian/Gaussian priors from a 

Bayesian probabilistic perspective
• Get more training data

– BIG data
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Many Models / Classifiers!
• Supervised learning categories and techniques

– Linear classifier (numerical functions) 

– Parametric (Probabilistic functions) 
• Naïve Bayes, Gaussian discriminant analysis (GDA), Hidden Markov 

models (HMM), Probabilistic graphical models 
– Non-parametric (Instance-based functions) 

• K-nearest neighbors, Kernel regression, Kernel density estimation, 
Local regression

– Non-metric (Symbolic functions) 
• Classification and regression tree (CART), decision tree 

– Aggregation
• Bagging (bootstrap + aggregation), Adaboost, Random forest 

• Unsupervised learning categories and techniques
– Clustering

• K-means clustering / Spectral clustering 
– Density Estimation 

• Gaussian mixture model (GMM) 
• Graphical models 

– Dimensionality reduction 
• Principal component analysis (PCA) 
• Factor analysis 25



Generative vs. Discriminative Classifiers

Generative Models
• Represent both the data and 

the labels
• Often, makes use of 

conditional independence 
and priors

• Examples
– Naïve Bayes classifier
– Bayesian network

• Models of data may apply to 
future prediction problems

Discriminative Models
• Learn to directly predict the 

labels from the data
• Often, assume a simple 

boundary (e.g., linear)
• Examples

– Logistic regression
– SVM
– Boosted decision trees

• Often easier to predict a 
label from the data than to 
model the data
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• Face detection
• Object detection and 

recognition
• Image segmentation
• Multimedia event 

detection
• Web search / information 

retrieval
• Computational biology

Applications Abound
• Finance
• E-commerce
• Space exploration
• Robotics
• Information extraction
• Social networks
• Debugging
• [Your favorite area]
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CROSS VALIDATION:
Cross-validation is a technique in which we train our model using 
the subset of the data-set and then evaluate using the 
complementary subset of the data-set.
The three steps involved in cross-validation are as follows :
1. Split data set into training and test set
2. Using the training set train the model.
3. Test the model using the test set 
USE: To get good out of sample accuracy

Even though we use cross validation technique we get variation  in 
accuracy when we train our model for that we use K-fold cross 
validation technique



In K-fold cross validation, we split the data-set into k 
number of subsets(known as folds) then we perform 
training on the all the subsets but leave one(k-1) 
subset for the evaluation of the trained model. In 
this method, we iterate k times with a different 
subset reserved for testing purpose each time. 



Questions?
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• Slides/content were adapted from:
– “Deep Learning” (Machine Learning Basics, Chapter 5, 

Goodfellow et al., 2016)
– “An Overview of Machine Learning” (Yi-Fan Chang, 2011)
– “CSE 446 Machine Learning” (intro) (Pedro Domingos)
– “Feature learning for image classification” (Kai Yu and 

Andrew Ng)
– “Machine Learning” (Computer Vision) James Hays, Brown

• Andrew Ng’s Machine Learning course/lectures:
– http://openclassroom.stanford.edu/MainFolder/CoursePage.

php?course=MachineLearning
• Data Mining textbook :  “Data Mining: Concepts and Techniques, 

Third Edition (The Morgan Kaufmann Series in Data 
Management Systems)” Han et al. 2011
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Some Machine Learning References

• General
– Tom Mitchell, Machine Learning, McGraw Hill, 1997
– Christopher Bishop, Neural Networks for Pattern 

Recognition, Oxford University Press, 1995

• Adaboost (to learn about Boosting)
– Friedman, Hastie, and Tibshirani, “Additive logistic 

regression: a statistical view of boosting”, Annals of 
Statistics, 2000 

• SVMs
– http://www.support-vector.net/icml-tutorial.pdf

Slide credit: D. Hoiem
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