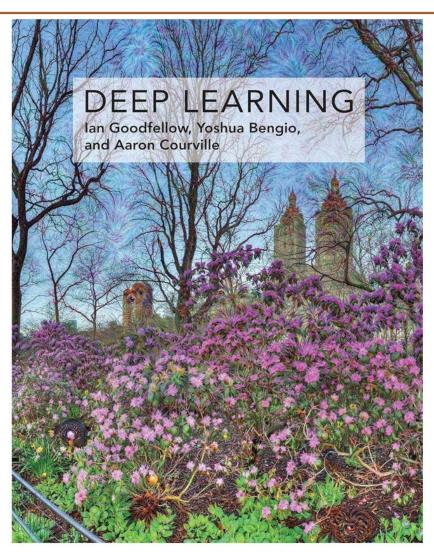


Class Logistics and Machine Learning Review

Alexander G. Ororbia II
Introduction to Machine Learning
CSCI-736
1/14/2025


Course Page/Syllabus Up

- Syllabus and policy:
- https://www.cs.rit.edu/~ago/courses/736/index.html

Prerequisites:

- CSCI 630: Foundations of Intelligent Systems
- Or equivalent background (exposure to ML)
- Introduce yourselves
 - Name, program/department, and research goals/topics of interest

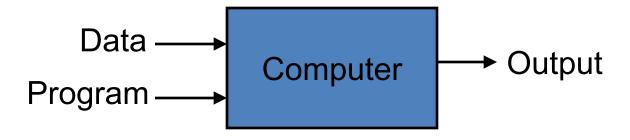
Your Textbook

Though it's worth owning and having on your own bookshelf too!

Free online: https://www.deeplearningbook.org/

Objectives for Today

- What is machine learning (ML)?
- What is representation learning?
- Conclusions
- Next time


Some Useful Prerequisites

- Basic algorithmic knowledge
- Some linear algebra (matrices/vectors, operations)
- Multivariate calculus


What is Machine Learning?

- A branch of artificial intelligence, concerned with the design and development of algorithms that allow computers to evolve their behavior based on empirical data
 - Automating automation
 - Getting computers to program themselves
 - Writing software is the bottleneck
 - Instead, let the data do the work instead!
- Intelligence requires knowledge, thus it is necessary for computers to acquire knowledge

Traditional Programming

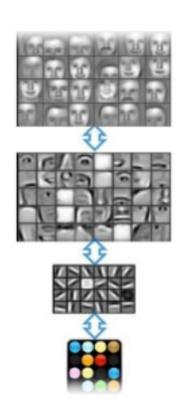
Machine Learning

Is it magic??

No, it's more like gardening

- Seeds = Algorithms
- Nutrients = Data
- Gardener = You
- Plants = Programs

ML in a Nutshell

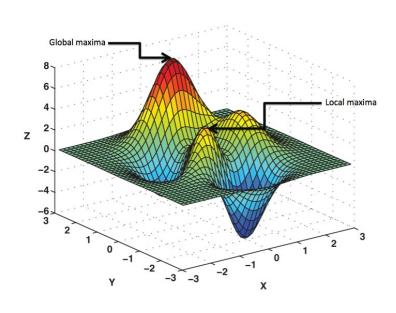

- Tens of thousands of ML algorithms
- Hundreds pop up every year

- Every machine learning algorithm has three components or "pillars":
 - Representation
 - Evaluation
 - Optimization

```
If you took CSCI 635
With me, you
probably got sick of
these three words!
```

Representation

- Your data and your model choice
- Some models you might use:
 - Decision trees
 - Sets of rules / Logic programs
 - Instances
 - Graphical models (Bayes/Markov nets)
 - Neural networks
 - Support vector machines
 - Model ensembles
 - Etc., etc.



Evaluation

- Your objective function and evaluation metrics
- Objectives
 - Squared error
 - Likelihood
 - Posterior probability
 - Cost / Utility (reward functionals)
 - Margin
 - Entropy, KL divergence
 - Etc.
- Evaluation
 - Accuracy
 - Precision and recall
 - PSNR, SSIM
 - Etc.

Optimization

- How you shape/change free parameters in your model(s)
- Combinatorial optimization
 - E.g.: Greedy search
- Convex optimization
 - E.g.: Gradient descent
- Constrained optimization
 - E.g.: Linear programming

Performance

- There are several factors affecting the performance:
 - Types of training provided
 - The form and extent of any initial background knowledge
 - The type of feedback provided
 - The learning algorithms used
- Two important factors: Modeling and Optimization
- The success of machine learning system also depends on the algorithms used/employed
- Algorithms control the search to find and build knowledge structures
- Learning algorithms should extract useful information from training examples

Types of Learning

- Supervised (inductive) learning $\{x_n \in \mathbb{R}^d, y_n \in \mathbb{R}\}_{n=1}^N$
 - Training data includes desired outputs
 - Prediction / Classification (discrete labels), Regression (real values)
- Unsupervised learning $\{x_n \in \mathbb{R}^d\}_{n=1}^N$
 - Training data does not include desired outputs
 - Clustering / probability distribution estimation
 - Finding association (in features)
 - Dimension reduction
- Semi-supervised learning
 - Training data includes a few desired outputs
- Reinforcement learning
 - Rewards from sequence of actions
 - Decision making (robot, chess machine)

Inductive Learning

- Given examples of a function (X, F(X))
- Predict function F(X) for new examples X
 - Discrete F(X): Classification
 - Continuous F(X): Regression
 - -F(X) = Probability(X): Probability estimation

Questions?