
Uncertainty in Deep 

Learning

Kevin Barkevich



|  2



|  3



|  4

Uncertainty: What is it?

Aleatoric:

- “Alea” - Latin for “dice”

- Represents the variability/randomness in the outcome of an experiment

- High uncertainty indicates the presence of meaningless “random noise”

- Not reducible with more training data

Epistemic:

- Represents a lack of knowledge in what the experiment’s outcome should be

- High uncertainty indicates a knowledge gap in the model

- Reducible with more training data
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Animation: What is it?

↓ Raised on cartoons That’s animation!

That’s animation!

I don’t know 

what that is!

Spongebob (Cartoon Animation)

Rick & Morty  (Cartoon Animation)

Coraline (Stop-motion Animation)

This is Epistemic Uncertainty.

Lack of Knowledge:

- The man cannot tell if a 

stop-motion film is 

animation.

Knowledge Gap:

- The man was only raised 

(trained) on cartoon 

animation.

- The man could only 

identify cartoons as 

animation.

If the man had been raised 

(trained) on more types of 

animation (a broader dataset), 

he could’ve identified Coraline 

as animation.
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Animation: What is it?

↓ Raised on a broad 

variety of animation That’s animation!

Spongebob (Cartoon Animation)

Rick & Morty  (Cartoon Animation)

I don’t know 

what that is!

Someone knocked over the satellite dish

Coraline  (Stop-motion Animation)

That’s animation!

This is Aleatoric Uncertainty.

Variability/Randomness

- The satellite dish being 

knocked over is unrelated 

to the type of media 

being presented.

Meaningless/Random Noise:

- The TV static does not 

indicate the animation 

type.

Even though the woman has 

been raised (trained) on more 

types of animation (a broader 

dataset), she still cannot tell if 

the TV program was animation 

or not.
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X, Y = Input, Target We assume Y is conditionally 

independent given X

(Common assumption that Y is normally distributed given X:)

P(Y | X) = Ɲ(μ(X), σ2(X)) μ and σ2 are the true mean and variance 

function

Equivalently…

Y = μ(X) + ϵ(X) with ϵ(X) ~ Ɲ(0, σ2(X)) Y is generated from X by μ(X) 

plus a 

zero-mean Gaussian noise with variance σ2(X). This quantifies the input-

dependent (heteroscedastic) aleatoric uncertainty.

How do we get estimates (μ, σ2) of the true mean/variance functions?

Aleatoric Uncertainty: Variance of the Input



|  8
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The NN outputs two values:

● predicted mean µ(X)

● predicted variance2 σ2(X) > 0.

These observed values are treated as a sample 

from a Gaussian distribution with the predicted 

mean and variance.

Predicting Aleatoric Uncertainty

The new predicted value (variance) must be accounted for in the loss, so that the 

optimizer (i.e. stochastic gradient descent) can optimize for it.
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Predicting Aleatoric Uncertainty
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Predicting Aleatoric Uncertainty
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Kendall, A., & Gal, Y. (2017). What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? Advances in Neural Information 
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Estimating Aleatoric Uncertainty (Semantic Seg.)

Y = μ(X) + ϵ(X) with ϵ(X) ~ Ɲ(0, σ2(X))
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Gal, Y., & Ghahramani, Z. (2015). Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. 33rd 

International Conference on Machine Learning, ICML 2016, 3, 1651–1660. https://arxiv.org/abs/1506.02142v6

Model uncertainty indicates a knowledge gap in the model.

By repeatedly sampling a model with different dropout parameters, this uncertainty 

can be represented.

Monte Carlo (MC) Dropout

- Does not require a “special” loss function

- Can be used with existing NN models trained with dropout

- The multiple passes can (with good enough hardware) be done concurrently

Epistemic Uncertainty: Uncertainty of the Model
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Epistemic Uncertainty Using MC Dropout

Gal, Y., & Ghahramani, Z. (2015). Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. 33rd 
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