PCA by Hand

By William Gebhardt

Math from session 1

Transposes Matter

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
-2 & -2 & 4 \\
-4 & 1 & 2 \\
2 & 2 & 5
\end{array}\right] \\
A^{T} & =\left[\begin{array}{ccc}
-2 & -4 & 2 \\
-2 & 1 & 2 \\
4 & 2 & 5
\end{array}\right]
\end{aligned}
$$

- When calculating eigenvalues they are the same for the transpose
- The eigenvectors change however
- Packages like numpy are flipped from conventional mathematics

The Same Eigenvalues

$$
(\lambda-3)(\lambda+5)(\lambda-6)=0
$$

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
-2 & -2 & 4 \\
-4 & 1 & 2 \\
2 & 2 & 5
\end{array}\right] \\
(\lambda-3)(\lambda+5)(\lambda-6)=0 \\
\lambda=3 \quad \begin{array}{c}
\lambda=-5
\end{array} \quad \lambda=6 \\
{\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right] \quad\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{l}
2.8 \\
2.2 \\
-1
\end{array}\right] \quad\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{c}
0.5 \\
0 \\
1
\end{array}\right]}
\end{gathered}
$$

Actually Doing PCA

Steps

1. Standardize data
a. Zero-mean
b. Standard deviation of 1
2. Compute the covariance matrix
3. Compute eigenvalue and vectors of covariance matrix
4. Order eigenvalues from largest to smallest
5. Compute desired variance captured
6. Reduce initial data set

Eigenvalue of a covariance matrix

[3.972, 1.702, 1.415, 1.073, 0.634, 0.564, 0.291, $0.22,0.052,0.076]$

3.972	39.7%	0.564	5.6%
1.702	17%	0.291	2.9%
1.415	14.2%	0.22	2.2%
1.073	10.7%	0.052	0.5%
0.634	6.3%	0.076	0.8%

- Computed like normal
- Represent the variance of the data along their corresponding eigenvector
- The sum of all eigenvalues is the total variance across the data
- Proportions of the variance can be attributed to specific eigenvalues

Capturing Variance

By percent variance

- Select a threshold
- Add component starting with the most varied till passed
threshold $=80 \%$
$3.972+1.702+1.415+1.073=8.16$

$$
=81.6 \%
$$

3.972	39.7%	0.564	5.6%
1.702	17%	0.291	2.9%
1.415	14.2%	0.22	2.2%
1.073	10.7%	0.052	0.5%
0.634	6.3%	0.076	0.8%

By number of components

- Choose a number of components n to reduce the feature space too
- Add the largest n eigenvalues to get captured variance
$n=3$
$3.972+1.702+1.415=7.09$
$=70.9 \%$

Reducing the dataset

- Concatenate desired eigenvectors together
- Forms (num_features x num_components)
- Take data and matrix multiply by the concatenated eigenvectors
- (num_points x num_features)(num_features x num_components) = (num_points x num_components)
- Only the concatenated matrix of eigenvectors needs to be stores to use on future data

Basic Code

Spot The Reproduction

Original

99\%

90\%

75\%

50\%

