PCA by Hand

By William Gebhardt

Math from session 1

Transposes Matter

- When calculating eigenvalues they are the same for the transpose
- The eigenvectors change however
- Packages like numpy are flipped from conventional mathematics

The Same Eigenvalues

 $(\lambda - 3)(\lambda + 5)(\lambda - 6) = 0$

 $A = egin{bmatrix} -2 & -2 & 4 \ -4 & 1 & 2 \ 2 & 2 & 5 \end{bmatrix}$ $(\lambda - 3)(\lambda + 5)(\lambda - 6) = 0$ $\lambda = 3$ $\lambda = -5$ $\lambda = 6$ $\begin{vmatrix} X \\ Y \\ Z \end{vmatrix} = \begin{vmatrix} 2 \\ -3 \\ 1 \end{vmatrix} \qquad \begin{vmatrix} X \\ Y \\ Z \end{vmatrix} = \begin{vmatrix} 2.8 \\ 2.2 \\ -1 \end{vmatrix} \qquad \begin{vmatrix} X \\ Y \\ Z \end{vmatrix} = \begin{vmatrix} 0.5 \\ 0 \\ 1 \end{vmatrix}$

Actually Doing PCA

Steps

- 1. Standardize data
 - a. Zero-mean
 - b. Standard deviation of 1
- 2. Compute the covariance matrix
- 3. Compute eigenvalue and vectors of covariance matrix
- 4. Order eigenvalues from largest to smallest
- 5. Compute desired variance captured
- 6. Reduce initial data set

Eigenvalue of a covariance matrix

[3.972, 1.702, 1.415, 1.073, 0.634, 0.564, 0.291, 0.22, 0.052, 0.076]

3.972	39.7%	0.564	5.6%
1.702	17%	0.291	2.9%
1.415	14.2%	0.22	2.2%
1.073	10.7%	0.052	0.5%
0.634	6.3%	0.076	0.8%

- Computed like normal
- Represent the variance of the data along their corresponding eigenvector
- The sum of all eigenvalues is the total variance across the data
- Proportions of the variance can be attributed to specific eigenvalues

Capturing Variance

3.97239.7%0.5645.6%17%2.9%1.7020.2911.41514.2%0.222.2%10.7%0.5%1.0730.0526.3%0.0760.8%0.634

By percent variance

- Select a threshold
- Add component starting with the most varied till passed

 $\begin{array}{l} {\rm threshold} = 80\% \\ {\rm 3.972} + 1.702 + 1.415 + 1.073 = 8.16 \\ {\rm = 81.6\%} \end{array}$

By number of components

- Choose a number of components *n* to reduce the feature space too
- Add the largest *n* eigenvalues to get captured variance

n=3

 $egin{array}{rl} 3.972+1.702+1.415=7.09\ =70.9\% \end{array}$

Reducing the dataset

- Concatenate desired eigenvectors together
 - Forms (num_features x num_components)
- Take data and matrix multiply by the concatenated eigenvectors
 - (num_points x num_features)(num_features x num_components) = (num_points x num_components)
- Only the concatenated matrix of eigenvectors needs to be stores to use on future data

Basic Code

Spot The Reproduction

