An Introduction to Principal Component Analysis

By William Gebhardt

Motivation

History

- Invented in 1901 by Karl Pearson
- In the 1930s Harold Hotelling independently developed a similar approach
- There are many different names for practically the same
 method
- Karhunen Loève Transform (Signal Processing)
- Hotelling Transform (Multivariate Quality Control)
- Proper Orthogonal Decomposition (Mechanical Engineering)
- Singular Value Decomposition (Linear Algebra)
- Many More

What is PCA?

- High dimension/feature reduction
- Breaks down a collection of data points into principal components
- Purely linear transformations
- Only a small portion of the components are needed to cover much of the variance

Background Math

Zero-mean and Standardization

Zero-mean

Shifts the mean to have the values
centered at zero

$$
X-\bar{X}
$$

Standardization

- Shifts all the points to have unit variance

$$
\frac{X}{\sigma_{X}}
$$

Independent Vectors and Matrix Inverses

Independent Vectors

- Two vectors that can not be made equal by multiplying by a scalar

$$
\begin{gathered}
\{1,1,2\} \\
\{2,-1,1\}
\end{gathered}
$$

Matrix Inverse

- Equivalent to the reciprocal of a matrix

$$
\begin{gathered}
A A^{-1}=I \\
A^{-1}=\frac{1}{|A|}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
\end{gathered}
$$

The Determinant

- Only exists for a square matrix

$$
|A|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-c b
$$

- Produces a scalar value from a matrix
- Determinant of a product of matrices is the product of their

$$
|A|=\left|\begin{array}{lll}
d & e & f \\
a & h & i
\end{array}\right|=a\left|\begin{array}{ll}
e & f \\
h & i
\end{array}\right|-b\left|\begin{array}{ll}
d & f \\
g & i
\end{array}\right|+c\left|\begin{array}{ll}
d & e \\
g & i
\end{array}\right|
$$

Covariance

- The measure of the joint variability of two random variables
- The Covariance Matrix of vectors is a symmetric matrix of the covariance between dimensions of vectors
- The row and column (i, j) correspond to the i'th and j'th dimension
$\operatorname{cov}(\mathrm{X}, \mathrm{Y})=\mathrm{E}[(X-\mathrm{E}(X))(Y-\mathrm{E}(Y))]$

Eigenvalues and Eigenvectors

Base Equations

- X: A nonzero vector existing in ndimensional space known as an eigenvector
- A: A linear transformation applied to X $A X=\lambda X$ represented as a square matrix
- $\quad \lambda$: A scalar value known as an eigenvalue

Finding Eigenvalues

- Rework our base equation into a

$$
\begin{aligned}
A X-\lambda X & =0 \\
(A-\lambda I) X & =0
\end{aligned}
$$ homogeneous system

- Cramer's Rule states that a linear system of equations has nontrivial solutions iff the determinant vanishes
- This is known as the characteristic equation of A

$$
\operatorname{det}(A-\lambda I)=0
$$

Example

$$
A=\left[\begin{array}{ccc}
-2 & -2 & 4 \\
-4 & 1 & 2 \\
2 & 2 & 5
\end{array}\right]
$$

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\operatorname{det}\left[\begin{array}{ccc}
-2 & -2 & 4 \\
-4 & 1 & 2 \\
2 & 2 & 5
\end{array}\right]-\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right] & =0 \\
\operatorname{det}\left[\begin{array}{ccc}
-2-\lambda & -2 & 4 \\
-4 & 1-\lambda & 2 \\
2 & 2 & 5-\lambda
\end{array}\right] & =0
\end{aligned}
$$

$$
(-2-\lambda)[(1-\lambda)(5-\lambda)-(2)(2)]-(-4)[(-2)(5-\lambda)-(4)(2)]+(2)[(-2)(2)-(4)(1-\lambda)]=0
$$

$$
\begin{aligned}
-\lambda^{3}+4 \lambda^{2}+27 \lambda-90 & =0 \\
\lambda^{3}-4 \lambda^{2}-27 \lambda+90 & =0 \\
(\lambda-3)\left(\lambda^{2}-\lambda-30\right) & =0 \\
(\lambda-3)(\lambda+5)(\lambda-6) & =0
\end{aligned}
$$

$$
\begin{array}{r}
\overline{\lambda=3} \begin{array}{c}
{\left[\begin{array}{ccc}
-2-\lambda & -2 & 4 \\
-4 & 1-\lambda & 2 \\
2 & 2 & 5-\lambda
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=0} \\
{\left[\begin{array}{ccc}
-5 & -2 & 4 \\
-4 & -2 & 2 \\
2 & 2 & 2
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=0}
\end{array}
\end{array}
$$

Recap

- If we solve for the nontrivial values of λ we will get up to n different eigenvalues ($3,-5,6$: in the example)
- When we plug these values into the base equation we will produce n systems of equations to solve
- The results are the eigenvectors corresponding to the eigenvalues

