

Artificial Neural Networks: On Variational Autoencoders

Alexander G. Ororbia II Introduction to Machine Learning CSCI-635 12/8/2023

Probabilistic Model Perspective

- Data x and latent variables z
- Joint pdf of the model: p(x,z) = p(x|z)p(z)
- Decomposes into likelihood: p(x|z), and prior: p(z)
- Generative process:

Draw latent variables $z_i \sim p(z)$ Draw datapoint $x_i \sim p(x|z)$

Graphical model:

To learn this model, we could appeal to Monte Carlo sampling or to the calculus of variations...

Probabilistic Model Perspective

- Data x and latent variables z
- Joint pdf of the model: p(x,z) = p(x|z)p(z)
- Decomposes into likelihood: p(x|z), and prior: p(z)
- Generative process:

Draw latent variables $z_i \sim p(z)$ Draw datapoint $x_i \sim p(x|z)$

Graphical model:

...or an intractable waste of time.

...so we 're going to develop a *variational inference* scheme using your neural building blocks!

Not sure if a learnable generative model...

- Goal: Build a neural network that generates digits from random (Gaussian) noise
- Define two sub-networks: Encoder and Decoder
- Define a Loss Function
 - A neural network $q_{\theta}(z|x)$
 - ▶ Input: datapoint x (e.g. 28 × 28-pixel digit)
 - Output: encoding z, drawn from Gaussian density with parameters θ

The variational distribution!

- Goal: Build a neural network that generates digits from random (Gaussian) noise
- Define two sub-networks: Encoder and Decoder
- Define a Loss Function
 - A neural network $p_{\phi}(x|z)$, parameterized by ϕ
 - Input: encoding z, output from encoder
 - Output: reconstruction \tilde{x} , drawn from distribution of the data
 - E.g., output parameters for 28×28 Bernoulli variables

- \tilde{x} is reconstructed from z where $|z| \ll |\tilde{x}|$
- How much information is lost when we go from x to z to \tilde{x} ?
- The Loss:
- Measure this with reconstruction log-likelihood: log $p_{\phi}(x|z)$
- Measures how effectively the decoder has learned to reconstruct x given the latent representation z
- Loss function is negative reconstruction log-likelihood + regularizer
- Loss decomposes into term for each datapoint:

$$L(heta,\phi) = \sum_{i=1}^{N} I_i(heta,\phi)$$

► Loss for datapoint *x_i*:

$$I_i(\theta,\phi) = -\mathbb{E}_{z \sim q_{\theta}(z|x_i)} \big[\log p_{\phi}(x_i|z) \big] + KL(q_{\theta}(z|x_i)||p(z)) \big]$$

The Cost:
$$L(\theta, \phi) = \sum_{i=1}^{N} \left(-\mathbb{E}_{z \sim q_{\theta}(z|x_i)} \left[\log p_{\phi}(x_i|z) \right] + KL(q_{\theta}(z|x_i)||p(z)) \right)$$

Negative reconstruction log-likelihood:

$$-\mathbb{E}_{z\sim q_{ heta}(z|x_i)}ig[\log p_{\phi}(x_i|z)ig]$$

- Encourages decoder to learn to reconstruct the data
- Expectation taken over distribution of latent representations

KL Divergence as regularizer:

 $\mathit{KL}(q_{\theta}(z|x_i)||p(z)) = \mathbb{E}_{z \sim q_{\theta}(z|x_i)}[\log q_{\theta}(z|x_i) - \log p(z)]$

- Measures information lost when using q_{θ} to represent p
- We will use $p(z) = \mathcal{N}(\mathbf{0}, \mathbf{I})$
- Encourages encoder to produce z's that are close to standard normal distribution
- Encoder learns a meaningful representation of MNIST digits
- Representation for images of the same digit are close together in latent space
- Otherwise could "memorize" the data and map each observed datapoint to a distinct region of space

Neural Variational Inference (NVIL)

- <u>Idea</u>: Teach neural net to approximate the posterior p(z|x)
 - -q(z|x) with 'variational parameters' ϕ
 - One-shot approximate inference
 - Also known as a recognition model
 - Construct estimator of the variational (evidence) lower bound (ELBO)
 - Can optimize jointly w.r.t. ϕ jointly with θ -> Stochastic gradient ascent

 D_{KL} KL-Divergence >= 0 depends on how good q(z|x) can approximate p(z|x)

Recall from the start of the semester:

KL Divergence:

$$D_{\mathrm{KL}}(P||Q) = \mathbb{E}_{\mathbf{x}\sim P}\left[\log\frac{P(x)}{Q(x)}\right] = \mathbb{E}_{\mathbf{x}\sim P}\left[\log P(x) - \log Q(x)\right].$$
 (3.50)

Gaussian KL Divergence:
$$KL(p,q) = \log \frac{\sigma_2}{\sigma_1} + \frac{\sigma_1^2 + (\mu_1 - \mu_2)^2}{2\sigma_2^2} - \frac{1}{2}$$
 $p \sim N(\mu_1, \sigma_1)$ $q \sim N(\mu_2, \sigma_2)$

Interpreting the bound:

- Approximate posterior distribution q(z|x): Best match to true posterior p(z|x), one of the unknown inferential quantities of interest to us.
- **Reconstruction cost**: The expected log-likelihood measures how well samples from q(z|x) are able to explain the data *x*.
- **Penalty:** Ensures that the explanation of the data q(z|x) doesn't deviate too far from your beliefs p(z). A mechanism for realising Ockham's razor.

The Variational Auto-Encoder

Determining the loss function

But...we have a problem!

The Reparameterization 'Trick'

- We want to use gradient descent to learn the model's parameters
- Given z drawn from q_θ(z|x), how do we take derivatives of (a function of) z w.r.t. θ?
- We can reparameterize: $z = \mu + \sigma \odot \epsilon$
- ▶ $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, and \odot is element-wise product
- Can take derivatives of (functions of) z w.r.t. μ and σ
- Output of $q_{\theta}(z|x)$ is vector of μ 's and vector of σ 's

The Reparameterization Trick

 $z \sim N(\mu, \sigma)$ is equivalent to $\mu + \sigma \cdot \epsilon$, where $\epsilon \sim N(0, 1)$

Putting It All Together!

Prior $p(z) \sim N(0,1)$ and p, q Gaussian, extension to dim(z) > 1 trivial

Cost: Regularisation

$$-D_{\mathrm{KL}}\left(q(z|x^{(i)})||p(z)\right) = \frac{1}{2}\sum_{j=1}^{J}\left(1 + \log(\sigma_{z_j}^{(i)^2}) - \mu_{z_j}^{(i)^2} - \sigma_{z_j}^{(i)^2}\right)$$

Cost: Reproduction

$$-\log(p(x^{(i)}|z^{(i)})) = \sum_{j=1}^{D} \frac{1}{2}\log(\sigma_{x_j}^2) + \frac{(x_j^{(i)} - \mu_{x_j})^2}{2\sigma_{x_j}^2}$$

We use mini batch gradient decent to optimize the cost function over all x⁽ⁱ⁾ in the mini batch

Least Square for constant variance

Putting It All Together!

Prior $p(z) \sim N(0,1)$ and p, q Gaussian, extension to dim(z) > 1 trivial

Samples....

	0000000	5 5 5 5 5 5 5		111111111
3 3 3 3 3 3 3 3 3 3 3 3	00000000			3 3 3 9 9 9 9 9 7 7 7
5 5 5 5 5 5 5 5 5 5 5	5555555		*******	3 3 3 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5555555	555555	222222222	3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
5 5 3 3 3 3 3 3 3 3 3 3 3	5555555	555555	55555555	999999999999
1 2 3 3 3 3 3 3 3 5 5 5	5555555	555555	555555555	99999999999
1 3 3 3 3 3 3 3 3 3 3 3	3335555	555555	55555555	99999999999
1 2 2 2 2 3 3 3 3 3	3335555	555555	55555555	9999999999
1222222333	3333355	55555	55555999	9999999999
1222222222	3333333	555555	55555999	9999999999
1222222222	22333333	333333	555559999	99999999997
1222222222	22233333	333333	55559999	9999999999
12222222222	2222333	55555	555599999	9999999999
12222222222	2222333	335555	55559999	999999999
12222222222	2222233	3 3 5 5 5 6	66666666	9999999
12222222222	2222233	5 5 5 5 5 6 6	00000000	aaaaaaaaa.
1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	2222223	8 8 8 8 8 8 8	00000000	000000000
1.0.0.0.0.0.0.0.0.0	2222223	1 1 1 1 1 1 1	00000000	aaaaaaaaa
1.6.6.6.6.6.6.6.6.6.6	2222222		00000000	aaaaaaaaa
166666666	44444		00000000	
1 6 6 6 6 6 6 6 6 6 6	4444444	00000	00000000	A A A A A A A A A A
1 6 6 6 6 6 6 6 6 6 6	4444444	00000	00000000	<i><i><i>aaaaaaaaaaaaa</i></i></i>
	666666888	00000	00000000	<i>444444477</i>
			00000000	9999999977
		000000	000000000	44444444
66666666666	66666888	000000	000000044	444444999
00000000000	66666688	000000	00000999	444444499
6666666666	6666688		000009944	444444999
6666666666	6666655	555555	55555444	444444999
6666666666	6666655.	555555	55556444	444449999
6666666666	6666665.	\$ \$ \$ \$ 5 5 5 5	55555544	444449999
6666666666	6666666	6 8 8 8 8 5 5 5	55555544	444499999
6666666666	6666668	6888555	55555544	9999999999
666666666	6666668	888855	5555594	444499999
1666666666	6666666	1115555	5555599	9999999999
1666666666	6666666	118855	5555559	9999999999
1 1 1 1 1 1 1 1 1 1 1 1	1111111	111155	\$ \$ \$ 5 5 5 5 9 9	9999999999
1111111111	1111111	111111	11555555	114499999
1111111111	1111111	111111	11111111	1119999999
1111111111	1111111	111111	1111111	1111999999
1111111111	1111111	111111	1111111	11111111111

QUESTIONS?

