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To learn this 
model, we could 
appeal to Monte 
Carlo sampling or 
to the calculus of 
variations…



…so we ‘re going 
to develop a 
variational 
inference scheme 
using your neural 
building blocks!

Not sure if a learnable 
generative model…

…or an intractable 
waste of time.



The variational 
distribution!





The Loss:

The Cost:





Neural Variational Inference (NVIL)
• Idea:  Teach neural net to approximate the posterior p(z|x)

– q(z|x) with ‘variational parameters’ φ 

– One-shot approximate inference 

– Also known as a recognition model

• Construct estimator of the variational (evidence) lower bound (ELBO)

• Can optimize jointly w.r.t. φ jointly with θ -> Stochastic gradient ascent

KL Divergence:

Gaussian KL Divergence:
𝑝 ~ 𝑁(𝜇1,𝜎1)

q ~ 𝑁(𝜇2,𝜎2)

Recall from the start of the semester:



Note: this form is 
in terms of log 
likelihood

Not sure if optimizing log 
likelihood…

…or a variational 
evidence lower 

bound!



The Variational Auto-Encoder
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But…we have a 
problem!



?? Backprop 
through numpy’s 
Gaussian RNG??



The Reparameterization ‘Trick’



The Reparameterization Trick
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Putting It All Together!
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Putting It All Together!

Why not capture modes (in text) 
with piecewise linear variables?

(Serban & Ororbia, 2016)



Samples….
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QUESTIONS?
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