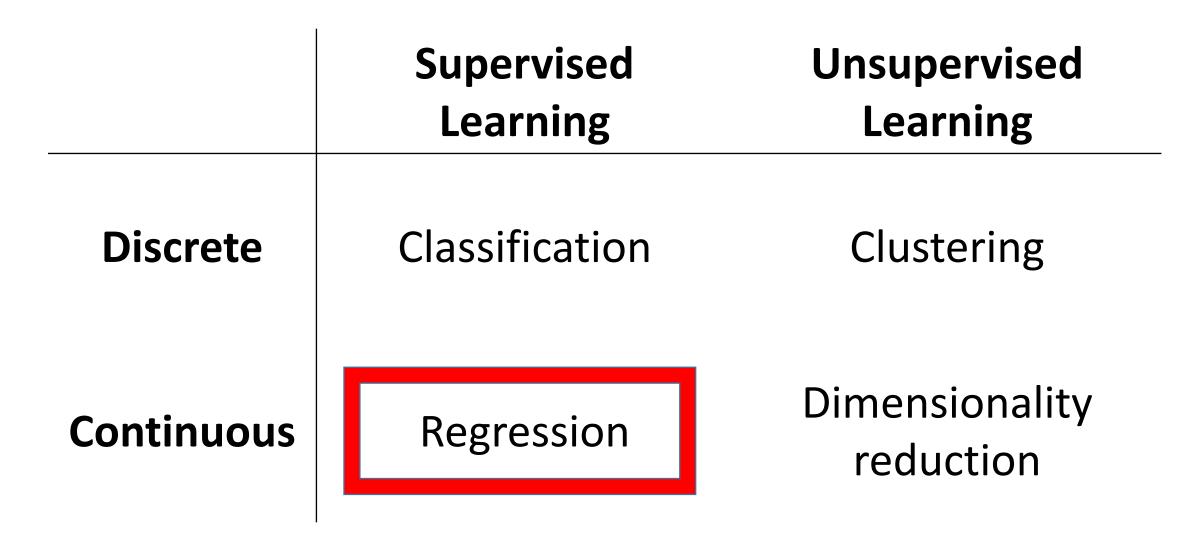


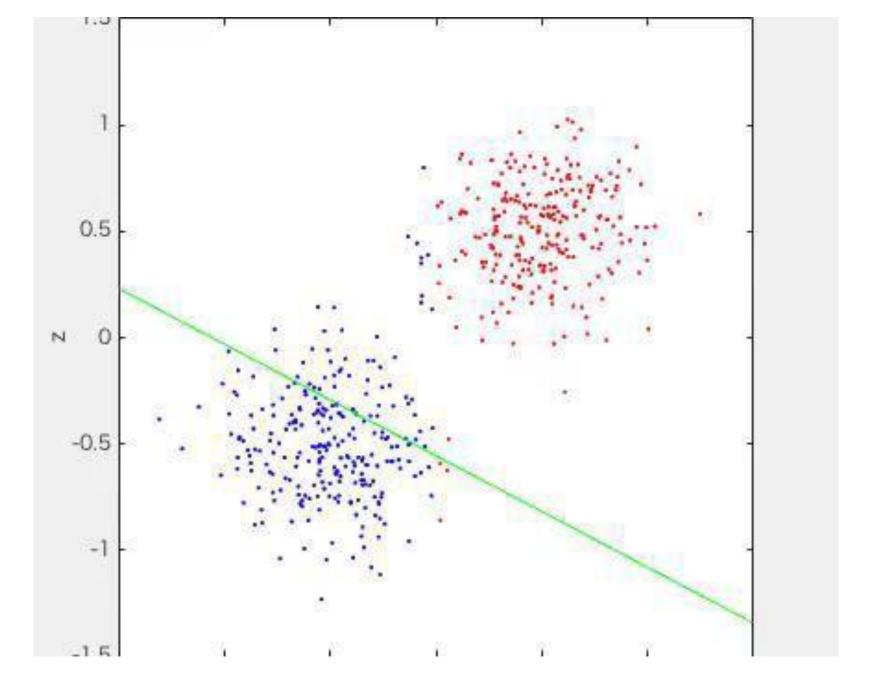
On Regularization and Some Logistic Regression

Alexander G. Ororbia II Introduction to Machine Learning CSCI-635 10/2/2023

Special Thanks: Sargur N. Srihari, Andrew Ng, Carlos Guestrin

Machine Learning Algorithms





Limiting Model Capacity

- Regularization has been used for decades prior to advent of deep learning
- Linear- and logistic-regression allow simple, straightforward and effective regularization strategies
 - Adding a parameter norm penalty $\Omega(\theta)$ to the objective function *J*:

 $\tilde{J}(\boldsymbol{\theta}; X, y) = J(\boldsymbol{\theta}; X, y) + \boldsymbol{\alpha} \boldsymbol{\Omega}(\boldsymbol{\theta})$

- where $\alpha\epsilon[0,\!\theta)$ is a hyperparameter that weight the relative contribution of the norm penalty term Ω
 - Setting α to 0 results in no regularization. Larger values correspond to more regularization

Gradient of Regularized Objective

• Objective function (with no bias parameter)

$$\tilde{J}(w; X, y) = \frac{\alpha}{2} w^T w + J(w; X, y)$$

Corresponding parameter gradient

 $\left|\nabla_{w}\tilde{J}(w;X,y) = \alpha w + \nabla_{w}J(w;X,y)\right|$

• To perform single gradient step, perform update:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \boldsymbol{\varepsilon} \left(\boldsymbol{\alpha} \boldsymbol{w} + \nabla_{\boldsymbol{w}} J \left(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y} \right) \right)$$

• Written another way, the update is

$$\boldsymbol{w} \leftarrow (1 - \boldsymbol{\varepsilon} \boldsymbol{\alpha}) \boldsymbol{w} - \boldsymbol{\varepsilon} \nabla_{\boldsymbol{w}} J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y})$$

– We have modified learning rule to shrink w by constant factor 1- $\epsilon \alpha$ at each step

Multivariate Regressor Architecture

Cost:

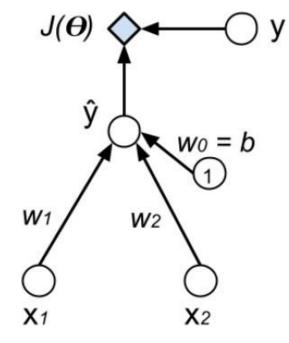
$$\mathcal{J}(\Theta) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\Theta}(x^{i}) - y^{i})^{2} + \frac{\beta}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

Derivative/Update:

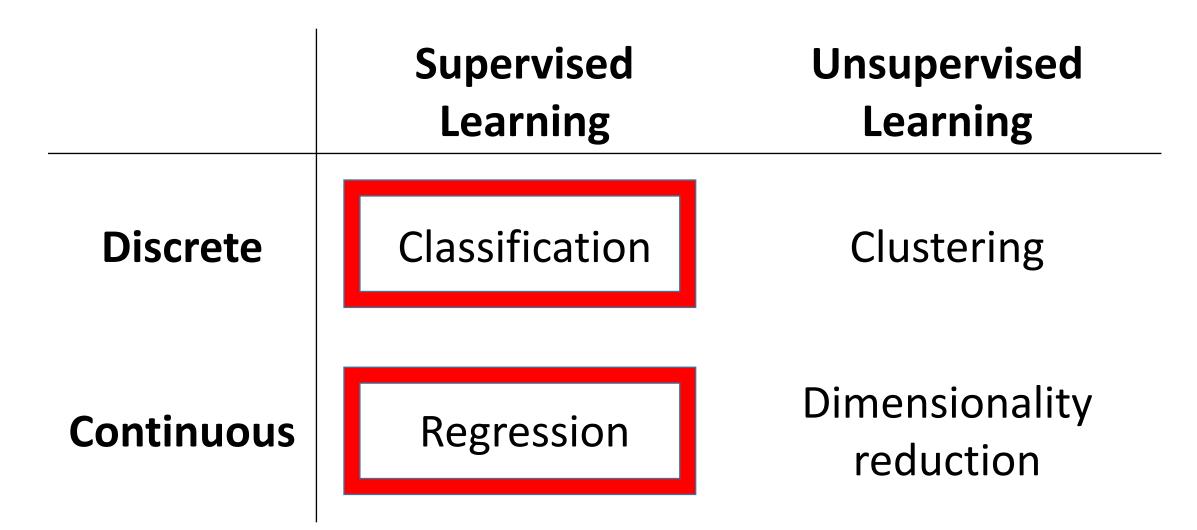
$$\frac{\partial \mathcal{J}(\Theta)}{\partial \theta_j} = \frac{1}{m} \sum_{i=1}^m (f_\Theta(x^i) - y^i) x_j^i + \frac{\beta}{m} \theta_j$$

Optimizer:

$$\theta_j = \theta_j - \alpha \frac{\partial \mathcal{J}(\Theta)}{\partial \theta_j} = \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (f_{\Theta}(x^i) - y^i) x_j^i, j = 0, 1, 2, \cdots, n.$$



Machine Learning Algorithms

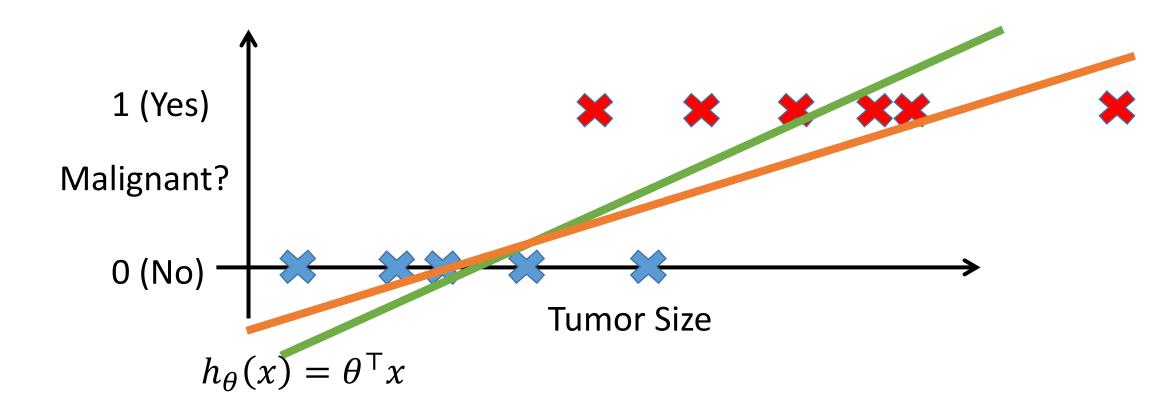


Logistic Regression

- Hypothesis representation
- Cost function
- Logistic regression with gradient descent
- Regularization
- Multi-class classification

Logistic Regression

- Hypothesis representation
- Cost function
- Logistic regression with gradient descent
- Regularization
- Multi-class classification



- Threshold classifier output $h_{\theta}(x)$ at 0.5
 - If $h_{\theta}(x) \ge 0.5$, predict "y = 1"
 - If $h_{\theta}(x) < 0.5$, predict "y = 0"

Why use Logistic Regression?

- There are many important research topics for which the dependent variable is "limited"
- For example: whether or not a person smokes/drinks/skips class/takes advanced mathematics
 - For these, outcome is not continuous or distributed normally
 - Example: Are mothers who have high school education less likely to have children with IEP's (individualized plans, indicating cognitive or emotional disabilities)

 Binary logistic regression is a type of regression analysis where dependent variable is a dummy variable:

coded 0 (*negative class*: did not smoke) or 1 (*positive class*: did smoke)

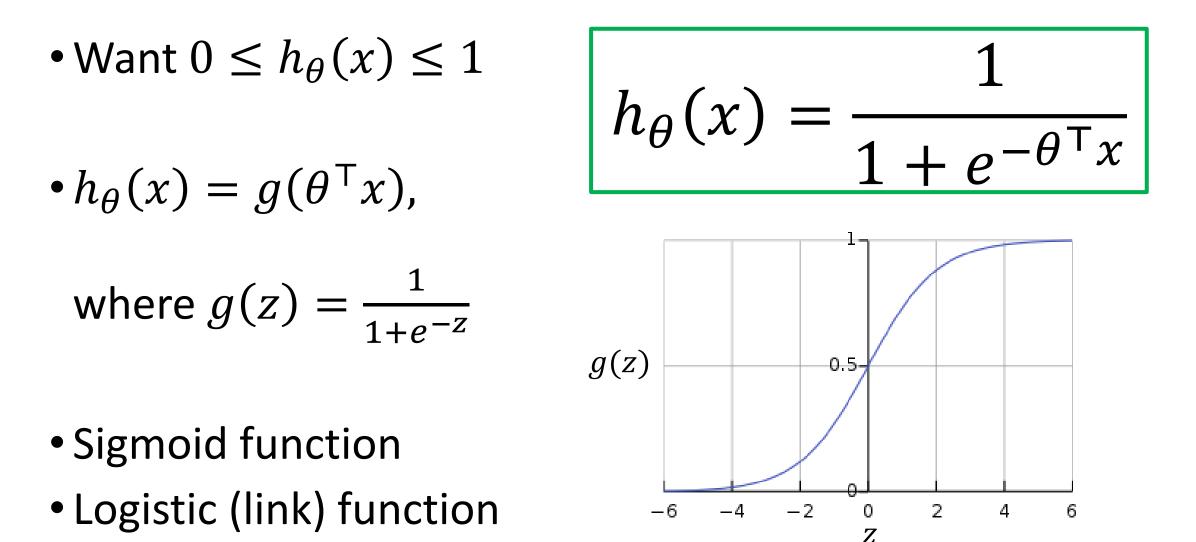
Classification: y = 1 or y = 0

$$h_{\theta}(x) = \theta^{\top} x$$
 (from linear regression) can be > 1 or < 0

Logistic regression: $0 \le h_{\theta}(x) \le 1$

Logistic regression is actually for classification

Hypothesis Representation



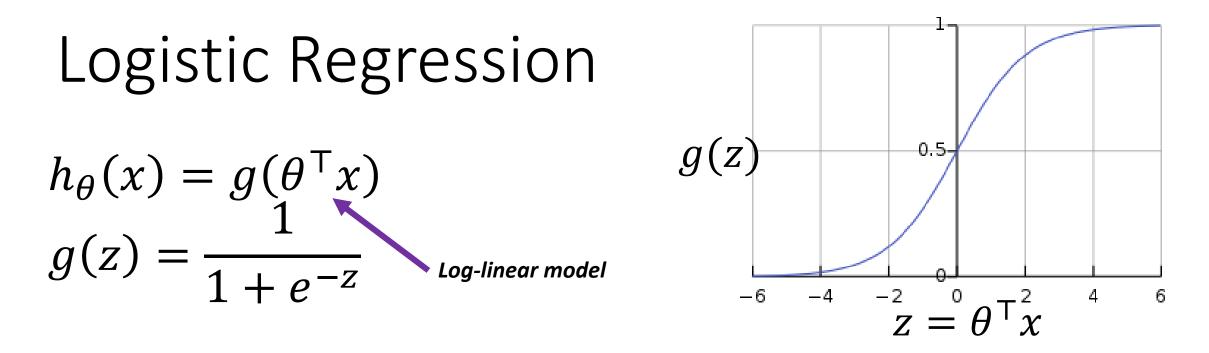
Interpretation of Hypothesis Output

• $h_{\theta}(x)$ = estimated probability that y = 1 on input x

• Example: If
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ tumorSize \end{bmatrix}$$

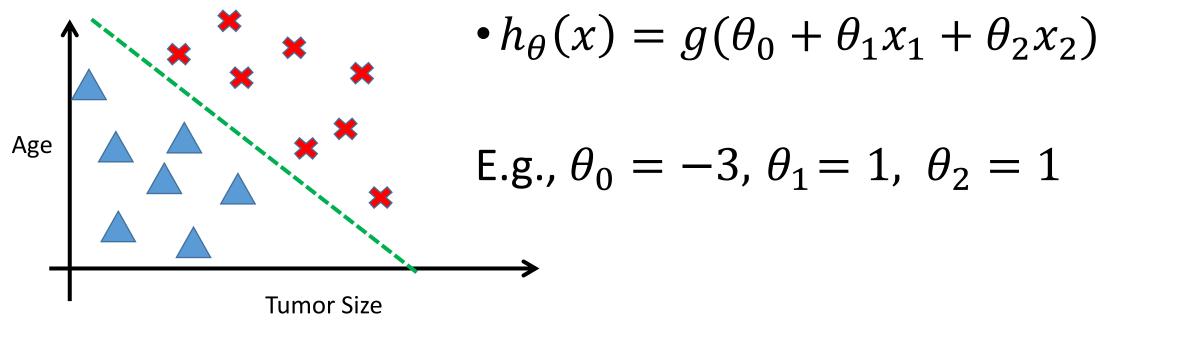
• $h_{\theta}(x) = 0.7$

• Tell patient that 70% chance of tumor being malignant

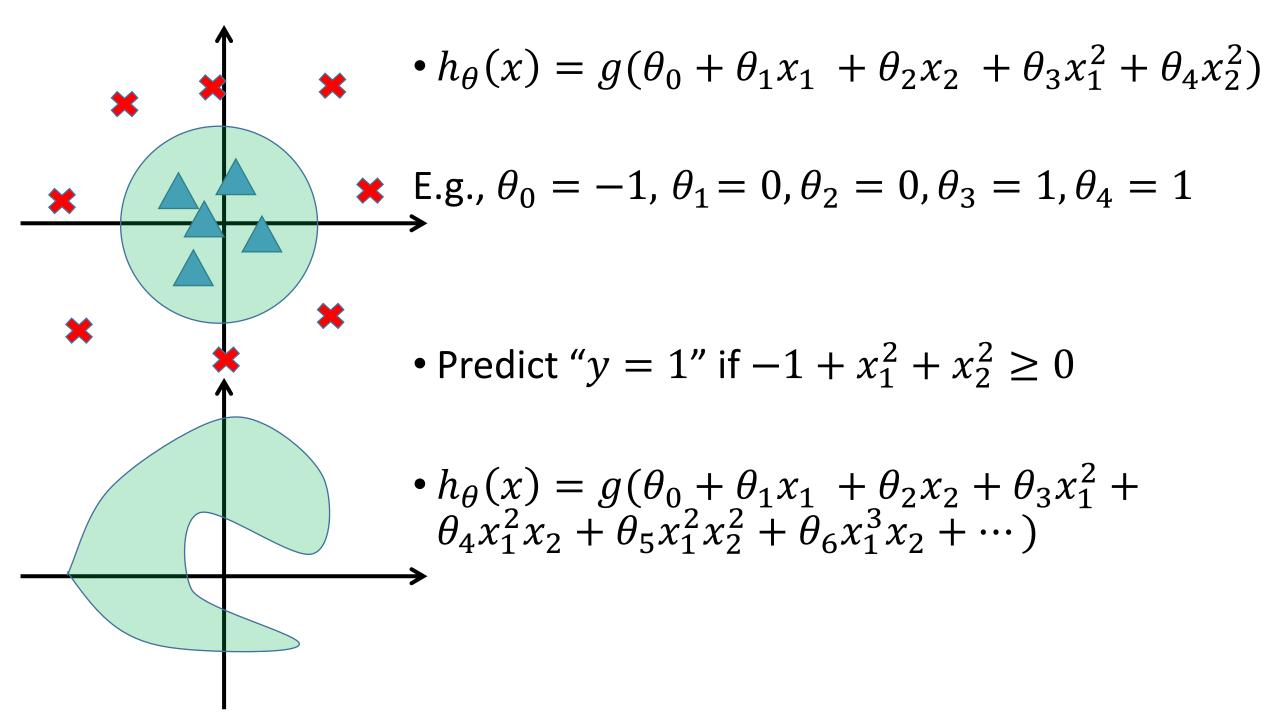


Suppose we predict "y = 1" if $h_{\theta}(x) \ge 0.5$ $z = \theta^{\top} x \ge 0$ we predict "y = 0" if $h_{\theta}(x) < 0.5$ $z = \theta^{\top} x < 0$

Decision Boundary



• Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$



Where Does the Form Come From?

- Logistic regression hypothesis representation $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{\top}x}} = \frac{1}{1 + e^{-(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n)}}$
- Consider learning f: $X \rightarrow Y$, where
 - X is a vector of real-valued features $[X_1, \dots, X_n]^{\top}$
 - Y is Boolean
 - Assume all X_i are **conditionally independent** given Y
 - Model $P(X_i|Y = y_k)$ as Gaussian $N(\mu_{ik}, \sigma_i)$
 - Model P(Y) as Bernoulli π

Where Does the Form Come From?

- Logistic regression hypothesis representation $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{\top}x}} = \frac{1}{1 + e^{-(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n)}}$
- Consider learning f: $X \rightarrow Y$, where
 - X is a vector of real-valued features $[X_1, \cdots, X_n]^\top$
 - Y is Boolean
 - Assume all X_i are *conditionally independent* given Y
 - Model $P(X_i|Y = y_k)$ as Gaussian $N(\mu_{ik}, \sigma_i)$
 - Model P(Y) as Bernoulli π

What is
$$P(Y|X_1, X_2, \cdots, X_n)$$
?

Questions?,

Deep robots!

Deep questions?!