

Artificial Neural Networks: On Time and Synthesis

Alexander G. Ororbia II Introduction to Machine Learning CSCI-635 12/6/2023

The Encoder-Decoder Framework

- Auto-association (auto-encoding)
 - Learn a compressed representation of the input (think of word2vec, except simpler)
 - Bottleneck layer = meaningful latent space
- Can de-couple encoder & decoder
 - Each can be complex, different functions

Input

An Encoder-Decoder or Sequence-to-Sequence RNN

Learns to generate an output sequence $(\pmb{y}^{(1)},..,\pmb{y}^{(n_y)})$

given an input sequence

 $({m x}^{(1)},...,{m x}^{(n_x)})$

It consists of an encoder RNN that reads an input sequence and a decoder RNN that generates the output sequence or computes the probability of a given output sequence)

The final hidden state of the encoder RNN Is used to compute a fixed size context *C* which represents a semantic summary of the input sequence and is given as jinput to the decoder

Figure 1: Deep recurrent neural network prediction architecture. The circles represent network layers, the solid lines represent weighted connections and the dashed lines represent predictions.

RNN to map a fixed length vector \boldsymbol{x} over sequences \boldsymbol{Y}

Appropriate for tasks such as image captioning where a single image is input which produces a sequence of words describing the image. Each element of the observed output $y^{(t)}$ of the observed output sequence serves both as input (for the current time step) and during training as target

Generative Models Revisited

Auto-association

Reconstructed data

Encoder: 4-layer conv Decoder: 4-layer upconv

Autoencoding: The Encoder-Decoder Framework

- Auto-association (auto-encoding)
 - Learn a compressed representation of the input, i.e., word2vec
 - Bottleneck layer = meaningful latent space
- Can de-couple encoder & decoder
 - Each can be complex, different functions

- Attempt to learn identity function
- Constrained in some way (e.g., small latent vector representation)
- Can generate new images by giving different latent vectors to trained network
- Variational: use probabilistic latent encoding

Probabilistic Model Perspective

- Data x and latent variables z
- Joint pdf of the model: p(x,z) = p(x|z)p(z)
- Decomposes into likelihood: p(x|z), and prior: p(z)
- Generative process:

Draw latent variables $z_i \sim p(z)$ Draw datapoint $x_i \sim p(x|z)$

Graphical model:

Probabilistic Model Perspective

- Data x and latent variables z
- Joint pdf of the model: p(x,z) = p(x|z)p(z)
- Decomposes into likelihood: p(x|z), and prior: p(z)
- Generative process:

Draw latent variables $z_i \sim p(z)$ Draw datapoint $x_i \sim p(x|z)$

Graphical model:

To learn this model, we could appeal to Monte Carlo sampling or to the calculus of variations...

Probabilistic Model Perspective

- Data x and latent variables z
- Joint pdf of the model: p(x,z) = p(x|z)p(z)
- Decomposes into likelihood: p(x|z), and prior: p(z)
- Generative process:

Draw latent variables $z_i \sim p(z)$ Draw datapoint $x_i \sim p(x|z)$

Graphical model:

...or an intractable waste of time.

...so we 're going to develop a *variational inference* scheme using your neural building blocks!

Not sure if a learnable generative model...

QUESTIONS?

