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Non-Standard Activations

Sigmoid TanH RelLU
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Linear Rectified Unit (Relu)

Not smooth / not differentiable everywhere, Benefit: Hard sparsity
Issues: Dead units, explosive weight updates
Parametric Relu (PRelu), leaky Relu: “Learn” slope of activation function
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The magic behind deep learning

THE HUMAN-IN-THE-LOOP



Manual, Exhaustive Search
Manual Search

Fast if you know what you are doing!
Explore a few configurations, based on
literature/heuristics

Select lowest validation loss configuration

Grid Search Deep tuning!

Compose an n-dimensional hypercube, where along
each axis is a hyper-parameter
(length determined by max & min values to explore)
Exhaustively calculate loss/error for each configuration (or combination of
meta-parameter values) in hypercube
Choose lowest error/minimal loss configuration as optimal model

Loss/error is calculated on a held-out validation/development set (or in held-
out set in cross-fold validation schemes)

Will ultimately find optimal model (given coarseness of grid-search)
Takes long time!



Random Search

Draw k sample configurations from hypercube & calculate
validation loss for each (w/o replacement)

Repeat T trials, can use optimal of each trial to inform subsequent trials
Could “guide” or “target” next set of random samples based on best last
found point (a guided stochastic search)

Surprisingly effective (over manual search) & faster than grid search

Grid Layout Random Layout

Unimportant parameter
Unimportant parameter

Important parameter Important parameter




Bayesian Optimization: Meta Machine Learning

Use machine learning to do your research for you...
Sequential Model Optimization (SMO)
Gaussian Processes for surface-response modeling
Gradient-based: Use another ANN

How do we tune this higher-level
parametric model?
Meta-meta-meta-....-machine learning??

High-level idea:
Build a meta-model (w/ some prior that
encodes intuition about hyper-parameter space)
Draw samples from space (i.e., run few model configurations)
Update meta-model using these samples

Meta-model selects next best point to evaluate
Balancing criterion, i.e., minimal error & minimal compute time
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Deep Thinking!

It Is a matter of posing the problem

What is the low-level representation of your sample?
(i.e., low-level features, inputs, or sensors)

Is there an output we are interested in?
Regression: a real-valued target
Categorization: a discrete target

How much data do you have?
More data is better! (MNIST is 60K)
Only a small sample?
Go Bayesian Neural Networks!

What kind of hardware do you have? ech it recogniion
Multi-CPU settings
GPUs
Specialized hardware?
FPGAs, TPUs?
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I:I Comvalution or Pool

Markow Chain (MO

Hopfield Metwark (HM)  Bolizmann Mzachine (BM)  Restricted 30 (RER)

A mostly complete chart of Deep zoo0!

Neural Networks ...
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Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)
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Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)
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Deep Residual Network (DRN) Kohonen Network (KN)  Support Vector Machine (SYM)  Neural Turing Machine (NTM)
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Violating the first ‘I” in I.i.d....

RECURRENT NEURAL NETWORKS



SP500: Jan-Jun 1987
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RNNSs process sequential data

* Recurrent Neural Networks are a family of neural networks for
processing sequential data

- RNN and CNN are both specialized architectures

RNN is specialized for processing a sequence of values =V),..,xl %)
»+ Just as CNN is specialized for processing a grid of values such as an image

RNNs can scale to much longer sequences than would be impractical for
networks without sequence-based specialization
RNNs can also process variable-length sequences

- Just as a CNN can scale to images with large width/height and process
variable size images



White Board Time!
(Turning MLPs into RNNs)

WHITE BOARD]TIME!IS

Efficient parameterization based on hAlY=f{h{*1),x":0)




QUESTIONS?
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