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Could Pretrain…or…Use Smarter Random Initializations

• Classical simple approaches

– Sample from ~U(-a, a), where is a small scalar

– Sample from ~N(0, a), where is a small standard deviation

• Fan-in-Fan-out (number inputs, number output)

– Calibrate by variances of neuronal activities

• Simple distributional schemes

– Fan-in/Fan-out Uniform

– Fan-in/Fan-out Gaussian  (good for ReLU activations)

• Orthogonal Initialization

– Use Singular Value Decomposition (SVD) to find initial 
weights

• Identity Initialization / Constraint (for RNNs)

– Does not always work unless constraint is enforced



OR…Just Wait Longer?!

• Even with poor initialization, just 
wait a really long time….

• Patience + really good hardware

• So one answer = more hardware



PARAMETER OPTIMIZATION

How to make those gradients work for you!



Optimization Schemes

• Steepest (mini-batch) gradient descent

– Use an estimator (i.e., backprop) to get gradient, 
then update parameters

– Stochastic gradient descent (SGD)

• Alternative optimizers = shiny toys to make 
learning even faster



Steepest Gradient Descent

• Simplest update rule

• Combine with early stopping

– Early stopping = tracking loss/error on validation set

– A simple form of regularization (weights will be smaller)



Simple Momentum

• Maintains rolling average of previous gradients

– Smooths out descent of minimization algorithm

– Prevent “bouncing around” on loss/error surface

• Many variants: momentum, Nesterov’s Accelerated Gradient 
(NAG), etc.



Adaptive Learning Rates
• Learning rate per parameter → empirically improves convergence

• AdaGrad: 

– Weights that receive high gradients → effective learning rate reduced

– Weights that receive small/infrequent updates → effective learning rate increased

• RMSprop:  
– Reduces AdaGrad’s aggressive, monotonically decreasing learning rate

– Moving average of squared gradients

• ADAM:  RMSprop + momentum (also corrects for bias towards zero at 
start of training)
– Very common in modern optimization of deep architectures

AdaGrad

RMSProp



Race of the Optimizers!

http://cs231n.github.io/neural-networks-3/#hyper



REGULARIZATION OF PARAMETERS

Every new idea is really yet another regularizer…



Regularization:  L2 Penalty

http://neuralnetworksanddeeplearning.com/chap3.html



Regularization:  L1 Penalty

http://neuralnetworksanddeeplearning.com/chap3.html



Drop-out and “Coadaptation”
• Feature coadaptation:  during learning, weights settle into their w/in network

– Neuronal weights tuned for specific features = some specialization (“neuronal context”)

– Neighboring neurons end up relying on this specialization → could result in a fragile model too 
specialized to the training data

• Each iteration, omit some units w/ given probability (binary masks)

– At inference time, simply multiply activations by probability

• In single hidden layer model, equivalent to Bayesian model averaging

• A form of architectural regularization

– Controls for overfitting

– Could also drop edges (i.e., Drop-Connect)

Note: You might find that 
this is quite similar to the 
classical Optimal Brain 
Surgeon & Damage 
algorithms…
…you would be right!



White Board Time! 
(Dropout)
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QUESTIONS?
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