R T 1L

Artificial Neural Networks:
The Practice of Neural Smithing

Alexander G. Ororbia Il
Introduction to Machine Learning
CSCI-635
11/29/2023

Could Pretrain...or...Use Smarter Random Initializations

e Classical simple approaches
— Sample from ~U(-a, a), where is a small scalar
— Sample from ~“N(0, a), where is a small standard deviation

Fan-in-Fan-out (number inputs, number output)

— Calibrate by variances of neuronal activities

Simple distributional schemes
— Fan-in/Fan-out Uniform
— Fan-in/Fan-out Gaussian (good for RelLU activations)

Orthogonal Initialization

— Use Singular Value Decomposition (SVD) to find initial
weights

|dentity Initialization / Constraint (for RNNs)

— Does not always work unless constraint is enforced

OR...Just Wait Longer?!

* Even with poor initialization, just
wait a really long time....

e Patience + really good hardware
* So one answer = more hardware

=

| ==
L

7 RoALY g —
I - oy . ~
&y)
30 4 g
b ¢
v 25) ¢ /
AR Jen" \
i { N 2 o
L 4
¥ o g

gt
= y .
«).Q e A
i 11 :8 1 2
R \"
“,

PARAMETER OPTIMIZATION

Optimization Schemes

e Steepest (mini-batch) gradient descent

— Use an estimator (i.e., backprop) to get gradient,
then update parameters

— Stochastic gradient descent (SGD)

e Alternative optimizers = shiny toys to make
learning even faster

Global maxima

| | |
wo H» N o N £ (=] -]
2 L L L L L L /

Steepest Gradient Descent

* Simplest update rule

* Combine with early stopping
— Early stopping = tracking loss/error on validation set
— A simple form of regularization (weights will be smaller)

x += — learning rate * dx

Simple Momentum

* Maintains rolling average of previous gradients
— Smooths out descent of minimization algorithm
— Prevent “bouncing around” on loss/error surface

* Many variants: momentum, Nesterov’s Accelerated Gradient
(NAG), etc.

v = mu * v — learning rate * dx

¥ = =

Adaptive Learning Rates

* Learning rate per parameter = empirically improves convergence
AdaGrad:

— Weights that receive high gradients = effective learning rate reduced

— Weights that receive small/infrequent updates - effective learning rate increased
RMSprop:

— Reduces AdaGrad’s aggressive, monotonically decreasing learning rate

— Moving average of squared gradients

ADAM: RMSprop + momentum (also corrects for bias towards zero at
start of training)

— Very common in modern optimization of deep architectures

cache = decay rate * cache + (1 - decay rate) * dx¥*2
x += — learning rate * dx [/ (np.sgrt(cache) + eps) RMSProp
cache += dx®**Z AdaGrad

x += - learning_rate * dx [f (np.sgrt (cache) + ep=)

Race of the Optimizers!

— SGD -
- Momentum F
— NAG
- Adagrad |
Adadelta
Rmsprop 4
2
0
-2
-4

http://cs231n.github.io/neural-networks-3/#hyper

5

st
0.9
UK

SGD
Momentum
NAG
Adagrad
Adadelta
Rmsprop

%)
5
/ l/'l

REGULARIZATION OF PARAMETERS

Regularization: L2 Penalty

The first term is just the usual expression for the cross-entropy. But
we've added a second term, namely the sum of the squares of all the
weights in the network. This is scaled by a factor A/2n, where A > 0
is known as the regularization parameter, and n is, as usual, the

size of our training set

http://neuralnetworksanddeeplearning.com/chap3.html

Regularization: L1 Penalty

A
C=0Cy+ — .
1w

Intuitively, this is similar to L2 regularization, penalizing large

weights, and tending to make the network prefer small weights

A aCy
w — 'I[l', = — — g]] w) — ﬂ—
5 () a 7

http://neuralnetworksanddeeplearning.com/chap3.html

Drop-out and “Coadaptation” e

Feature coadaptation: during learning, weights settle into their w/in network
— Neuronal weights tuned for specific features = some specialization (“neuronal context”)

— Neighboring neurons end up relying on this specialization = could result in a fragile model too
specialized to the training data

Each iteration, omit some units w/ given probability (binary masks)
— At inference time, simply multiply activations by probability

In single hidden layer model, equivalent to Bayesian model averaging
A form of architectural regularization

— Controls for overfitting

— Could also drop edges (i.e., Drop-Connect)

Note: You might find that
this is quite similar to the
classical Optimal Brain

Surgeon & Damage
w PW! .
. algorithms...
Present with Always .
- ...you would be right!
probability p present

(a) Standard Neural Net (b) After applying dropout. (c) At training time (d) At test time

White Board Time!
(Dropout)

e\ -~ '
WHITE BOARD TlME!

QUESTIONS?

	Slide 1
	Slide 2: Could Pretrain…or…Use Smarter Random Initializations
	Slide 3: OR…Just Wait Longer?!
	Slide 4: Parameter Optimization
	Slide 5: Optimization Schemes
	Slide 6: Steepest Gradient Descent
	Slide 7: Simple Momentum
	Slide 8: Adaptive Learning Rates
	Slide 9: Race of the Optimizers!
	Slide 10: Regularization of Parameters
	Slide 11: Regularization: L2 Penalty
	Slide 12: Regularization: L1 Penalty
	Slide 13: Drop-out and “Coadaptation”
	Slide 14: White Board Time! (Dropout)
	Slide 26: QUESTIONS?

