
Artificial Neural Networks:
The Practice of Neural Smithing

Alexander G. Ororbia II

Introduction to Machine Learning

CSCI-635

11/29/2023

Could Pretrain…or…Use Smarter Random Initializations

• Classical simple approaches

– Sample from ~U(-a, a), where is a small scalar

– Sample from ~N(0, a), where is a small standard deviation

• Fan-in-Fan-out (number inputs, number output)

– Calibrate by variances of neuronal activities

• Simple distributional schemes

– Fan-in/Fan-out Uniform

– Fan-in/Fan-out Gaussian (good for ReLU activations)

• Orthogonal Initialization

– Use Singular Value Decomposition (SVD) to find initial
weights

• Identity Initialization / Constraint (for RNNs)

– Does not always work unless constraint is enforced

OR…Just Wait Longer?!

• Even with poor initialization, just
wait a really long time….

• Patience + really good hardware

• So one answer = more hardware

PARAMETER OPTIMIZATION

How to make those gradients work for you!

Optimization Schemes

• Steepest (mini-batch) gradient descent

– Use an estimator (i.e., backprop) to get gradient,
then update parameters

– Stochastic gradient descent (SGD)

• Alternative optimizers = shiny toys to make
learning even faster

Steepest Gradient Descent

• Simplest update rule

• Combine with early stopping

– Early stopping = tracking loss/error on validation set

– A simple form of regularization (weights will be smaller)

Simple Momentum

• Maintains rolling average of previous gradients

– Smooths out descent of minimization algorithm

– Prevent “bouncing around” on loss/error surface

• Many variants: momentum, Nesterov’s Accelerated Gradient
(NAG), etc.

Adaptive Learning Rates
• Learning rate per parameter → empirically improves convergence

• AdaGrad:

– Weights that receive high gradients → effective learning rate reduced

– Weights that receive small/infrequent updates → effective learning rate increased

• RMSprop:
– Reduces AdaGrad’s aggressive, monotonically decreasing learning rate

– Moving average of squared gradients

• ADAM: RMSprop + momentum (also corrects for bias towards zero at
start of training)
– Very common in modern optimization of deep architectures

AdaGrad

RMSProp

Race of the Optimizers!

http://cs231n.github.io/neural-networks-3/#hyper

REGULARIZATION OF PARAMETERS

Every new idea is really yet another regularizer…

Regularization: L2 Penalty

http://neuralnetworksanddeeplearning.com/chap3.html

Regularization: L1 Penalty

http://neuralnetworksanddeeplearning.com/chap3.html

Drop-out and “Coadaptation”
• Feature coadaptation: during learning, weights settle into their w/in network

– Neuronal weights tuned for specific features = some specialization (“neuronal context”)

– Neighboring neurons end up relying on this specialization → could result in a fragile model too
specialized to the training data

• Each iteration, omit some units w/ given probability (binary masks)

– At inference time, simply multiply activations by probability

• In single hidden layer model, equivalent to Bayesian model averaging

• A form of architectural regularization

– Controls for overfitting

– Could also drop edges (i.e., Drop-Connect)

Note: You might find that
this is quite similar to the
classical Optimal Brain
Surgeon & Damage
algorithms…
…you would be right!

White Board Time!
(Dropout)

36

QUESTIONS?

	Slide 1
	Slide 2: Could Pretrain…or…Use Smarter Random Initializations
	Slide 3: OR…Just Wait Longer?!
	Slide 4: Parameter Optimization
	Slide 5: Optimization Schemes
	Slide 6: Steepest Gradient Descent
	Slide 7: Simple Momentum
	Slide 8: Adaptive Learning Rates
	Slide 9: Race of the Optimizers!
	Slide 10: Regularization of Parameters
	Slide 11: Regularization: L2 Penalty
	Slide 12: Regularization: L1 Penalty
	Slide 13: Drop-out and “Coadaptation”
	Slide 14: White Board Time! (Dropout)
	Slide 26: QUESTIONS?

