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Could Pretrain...or...Use Smarter Random Initializations

e Classical simple approaches
— Sample from ~U(-a, a), where is a small scalar
— Sample from ~“N(0, a), where is a small standard deviation

Fan-in-Fan-out (number inputs, number output)

— Calibrate by variances of neuronal activities

Simple distributional schemes
— Fan-in/Fan-out Uniform
— Fan-in/Fan-out Gaussian (good for RelLU activations)

Orthogonal Initialization

— Use Singular Value Decomposition (SVD) to find initial
weights

|dentity Initialization / Constraint (for RNNs)

— Does not always work unless constraint is enforced



OR...Just Wait Longer?!

* Even with poor initialization, just
wait a really long time....

e Patience + really good hardware
* So one answer = more hardware
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PARAMETER OPTIMIZATION



Optimization Schemes

e Steepest (mini-batch) gradient descent

— Use an estimator (i.e., backprop) to get gradient,
then update parameters

— Stochastic gradient descent (SGD)

e Alternative optimizers = shiny toys to make
learning even faster

Global maxima
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Steepest Gradient Descent

* Simplest update rule

* Combine with early stopping
— Early stopping = tracking loss/error on validation set
— A simple form of regularization (weights will be smaller)

x += — learning rate * dx



Simple Momentum

* Maintains rolling average of previous gradients
— Smooths out descent of minimization algorithm
— Prevent “bouncing around” on loss/error surface

* Many variants: momentum, Nesterov’s Accelerated Gradient
(NAG), etc.

v = mu * v — learning rate * dx

¥ = =



Adaptive Learning Rates

* Learning rate per parameter = empirically improves convergence
AdaGrad:

— Weights that receive high gradients = effective learning rate reduced

— Weights that receive small/infrequent updates - effective learning rate increased
RMSprop:

— Reduces AdaGrad’s aggressive, monotonically decreasing learning rate

— Moving average of squared gradients

ADAM: RMSprop + momentum (also corrects for bias towards zero at
start of training)

— Very common in modern optimization of deep architectures

cache = decay rate * cache + (1 - decay rate) * dx¥*2
x += — learning rate * dx [/ (np.sgrt(cache) + eps) RMSProp
cache += dx®**Z AdaGrad

x += - learning_rate * dx [f (np.sgrt (cache) + ep=)



Race of the Optimizers!

— SGD -
-  Momentum F
— NAG
- Adagrad |
Adadelta
Rmsprop 4
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http://cs231n.github.io/neural-networks-3/#hyper
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REGULARIZATION OF PARAMETERS



Regularization: L2 Penalty

The first term is just the usual expression for the cross-entropy. But
we've added a second term, namely the sum of the squares of all the
weights in the network. This is scaled by a factor A/2n, where A > 0
is known as the regularization parameter, and n is, as usual, the

size of our training set

http://neuralnetworksanddeeplearning.com/chap3.html



Regularization: L1 Penalty
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Intuitively, this is similar to L2 regularization, penalizing large

weights, and tending to make the network prefer small weights
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http://neuralnetworksanddeeplearning.com/chap3.html



Drop-out and “Coadaptation” e

Feature coadaptation: during learning, weights settle into their w/in network
— Neuronal weights tuned for specific features = some specialization (“neuronal context”)

— Neighboring neurons end up relying on this specialization = could result in a fragile model too
specialized to the training data

Each iteration, omit some units w/ given probability (binary masks)
— At inference time, simply multiply activations by probability

In single hidden layer model, equivalent to Bayesian model averaging
A form of architectural regularization

— Controls for overfitting

— Could also drop edges (i.e., Drop-Connect)

Note: You might find that
this is quite similar to the
classical Optimal Brain

Surgeon & Damage
w PW! .
. algorithms...
Present with Always .
- ...you would be right!
probability p present

(a) Standard Neural Net (b) After applying dropout. (c) At training time (d) At test time



White Board Time!
(Dropout)
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QUESTIONS?
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