

Elemental Learning Theory (Wrap-up!)

Alexander G. Ororbia II Introduction to Machine Learning CSCI-635 9/22/2023

Polynomial Curve Fitting with a Scalar

Coefficients w_0, \ldots, w_M are collectively denoted by vector w

- **Task**: Learn w from training data $D = \{(x_i, t_i)\}, i = 1, ..., N$

- Can be done by minimizing an error function that minimizes misfit between $y(x, \mathbf{w})$ for any given \mathbf{w} and training data
- One simple choice of error function is sum of squares of error (*SSE*) between predictions $y(x_n, w)$ for each data point x_n and corresponding target values t_n so that we minimize: $E(w) = \frac{1}{2} \sum_{i=1}^{N} \left\{ y(x_n, w) - t_n \right\}^2$
- It is zero when function y(x,w) passes exactly through each training data point

On Basis Functions

- In many applications, we apply some form of fixed-preprocessing, or feature extraction, to the original data variables
- If the original variables comprise the vector **X**, then the features can be expressed in terms of basis functions { φ_j(x)}
 - By using nonlinear basis functions we allow the function $y(\mathbf{x}, \mathbf{w})$ to be a nonlinear function of the input vector \mathbf{x}
 - They are linear functions of parameters (gives them simple analytical properties), yet are nonlinear wrt input variables

Fixed Basis Functions

Although we use linear (classification) models Linear-separability in *feature* space *does not* imply linear-separability in *input* space

Original Input Space (x_1, x_2)

not linearly separable

Nonlinear transformation of inputs using vector of basis functions $\phi(\mathbf{x})$

Basis functions are Gaussian with centers shown by crosses and green contours

linearly separable

Basis functions with increased dimensionality often used

Choosing the Order of M

- Model Comparison or Model Selection
- Red lines are best fits with

- M = 0,1,3,9 and N=10

Computational Bottleneck

- A recurring problem in machine learning:
 - Large training sets are necessary for good generalization
 - BUT large training sets are also computationally expensive to use
- Stochastic gradient descent (SGD) is an extension of gradient descent (GD) that offers a solution
 - Moreover, it is a vehicle for generalization beyond training set
 - Expectation may be approximated using small set of samples (we will also later refer to these sets as "minibatches" → mini-batch GD)

