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Polynomial Curve Fitting with a Scalar
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With a single input variable x — ) 5

— Y(x,W) = Wotwx+wx2+. . +FwpyaM|= D w X ; -
M= order of polynomial, j=0 Training data set

x/ denotes x raised to power j, N=10, Input x, target ¢

Coefficients w,,...,w,,are collectively denoted by vector w

— Task: Learn w from training data D ={(x,t;)}, i =1,..,N

« Can be done by minimizing an error function that minimizes misfit
between y(x,w) for any given wand trainingdata

* One simple choice of error function is sum of squares of error (SSE)
between predictions y(x,,w) for each data point x, and corEeSpondlng

target values ¢, so that we minimize: 1
g (W):EZ{Q(I w) t}
n=1

* Itis zero when function y(x,w) passes exactly through each training
data point



On Basis Functions

* In many applications, we apply some form of
fixed-preprocessing, or feature extraction, to
the original data variables

* |f the original variables comprise the vector X,
then the features can be expressed in terms of
basis functions { ¢ ; (x)}

— By using nonlinear basis functions we allow the
function y(x,w) to be a nonlinear function of the

Input vector x

* They are linear functions of parameters (gives them
simple analytical properties), yet are nonlinear wrt input
variables



Fixed Basis Functions

Although we use linear (classification) models
Linear-separability in feature space does not

Imply linear-separabillity in input space

Original Input Space (xy,x,) Feature Space (¢,,¢,)
Nonlinear transformation _:"."‘"?"’?:\
of inputs using vector of “l - .
basis functions ¢x) //,/
> i A

- Basis functions are )
Gaussian with centers ; .
shown by crosses and
green contours

not linearly separable linearly separable

Basis functions with increased dimensionality often used
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« Model Comparison or Model Selection
Red lines are best fits with
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Choosing the Order of M

~ M=0,1,3.9 and N=10
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Computational Bottleneck

* Arecurring problem in machine learning:

— Large training sets are necessary for good
generalization

— BUT large training sets are also computationally
expensive to use
« Stochastic gradient descent (SGD) is an extension of
gradient descent (GD) that offers a solution
— Moreover, it Is a vehicle for generalization beyond
training set

— Expectation may be approximated using small set of
samples (we will also later refer to these sets as “mini-
batches”™ = mini-batch GD)
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