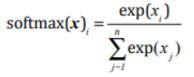


Numerical Computation

Alexander G. Ororbia II Introduction to Machine Learning CSCI-635 9/8/2023

Overview


- ML algorithms usually require a high amount of numerical computation
 - To update estimate of solutions iteratively
 - not analytically derive formula providing expression
- Common operations:
 - Optimization
 - Determine maximum or minimum of a function
 - Solving system of linear equations
- Just evaluating a mathematical function of real numbers with finite memory can be difficult

Overflow and Underflow

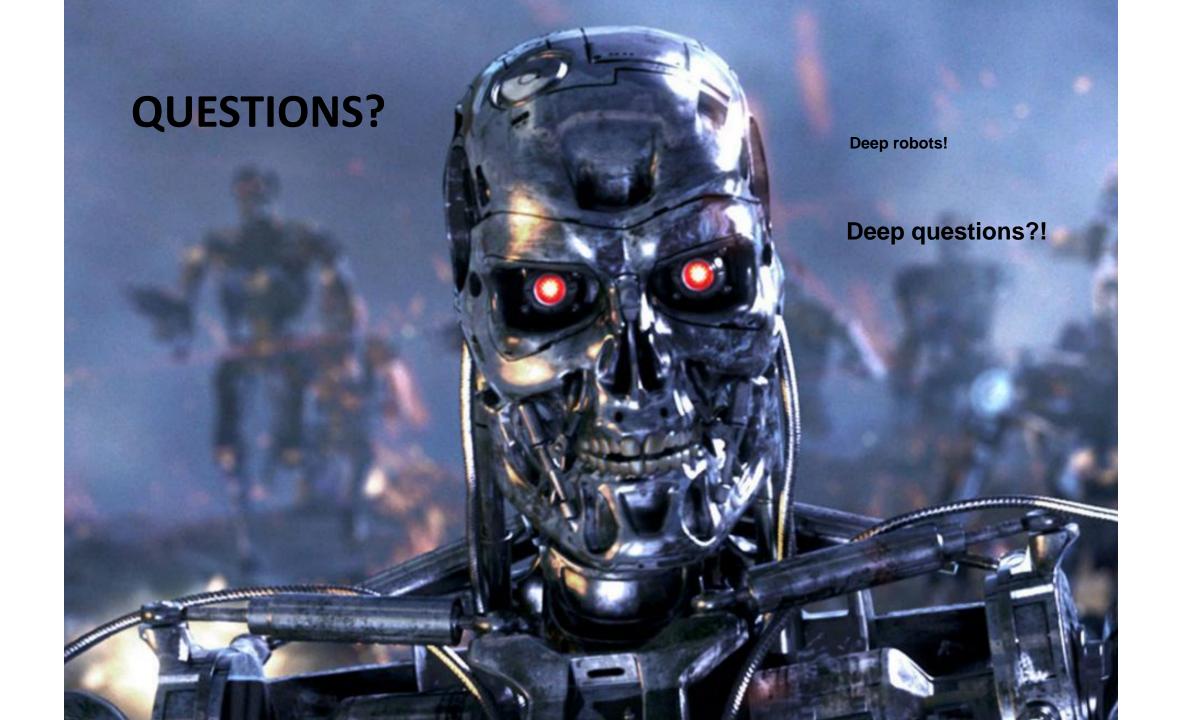
- Problems caused by representing real numbers w/ finite bit patterns
 - For almost all real numbers, we resort to / encounter approximations
- Rounding error(s) might compound across many operations; lead to algorithm failure
 - Numerical errors
 - **Underflow** = when numbers close to zero are rounded to zero, e.g., $log(0) = -\infty$ (becomes *NaN*, nont-a-number, in later ops)
 - **Overflow** = when numbers w/ large magnitude are approximated as $-\infty$ or ∞ (again, become NaN)

Function needing stabilization for Over/Underflow

Softmax probabilities in multinoulli

- Consider when all x_i are equal to some c. Then all probabilities must equal 1/n. This may not happen
 - When c is a large negative; denominator =0, result undefined underflow
 - When c is large positive, exp(c) will overflow
- Circumvented using softmax(z) where $z = x \max_i x_i$
- Another problem: underflow in numerator can cause log softmax (x) to be -∞
 - Same trick can be used as for softmax

Dealing with Numerical Considerations


- Developers of low-level libraries should take this into consideration
- ML libraries should be able to provide such stabilization
 - Libraries such as Tensorflow, Pytorch, Theano detect and safeguard against this (automatically)

Poor Conditioning

- Conditioning refers to how rapidly a function changes with a small change in input
- Rounding errors can rapidly change the ouput

y = A * x, we want to (pseudo-)invert A, yielding x = A^(-1) * y (e.g., dim reduction) \rightarrow Uninvertible means we do not have enough data but...

- \rightarrow A⁽⁻¹⁾ is "almost uninvertible" with high condition number
 - → Projection/reduction is inaccurate or "garbage"
 - \rightarrow Use eigendecomposition to find condition numbers

