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The Vanishing Gradient Problem

• Solving credit assignment problem with back-
propagation (backprop) too difficult
– Difficult to know how much importance to accord to 

remote inputs (Bengio et al., 1994)

– Information passed through chain of multiplications 
back through network – vanishing gradients
• Any value slightly less than 1 in Hadamard product, 

derivative signal quickly shrinks to useless values (near zero)

– Learning long-term dependencies in temporal 
sequences becomes near impossible

• Complementary problem: exploding gradients
– Any value greater than 1 in Hadamard product, 

derivative signal increases dramatically (numerical 
overflow)



The Logistic Sigmoid and Its Derivative:



THE IMPORTANCE OF STARTING 
OUT RIGHT: INITIALIZATION

How to make those gradients work for you!



Why do we care how parameters are 
initialized?

• Initialization affects final 
performance

– Will put closer to some 
spots in function space 
and farther from others

• Where we end up in 
function space will often 
correlate w/ our error 
performance “Why Does Unsupervised Pre-training Help Deep Learning?”, Erhan et al. 

2010 http://jmlr.org/papers/volume11/erhan10a/erhan10a.pdf



Pre-Training: Learning Your Initialization

• General idea: 

– Train another model,
e.g., deep belief network → 

– Dump its parameters into the 
one you care about

– Fine-tune final model

• Unsupervised generative 
models were largely useful 
for this

With: , ,



Pretraining: Stacked (Neural) Models



White Board Time! 
A Simple (Denoising) Autoencoder



Pre-training works! (Erhan et al., 2010), but…

• 2-stage learning (Bengio et al., 2007)

– Step 1: (Greedy) unsupervised pre-training
• Deep Belief Networks:  Contrastive Divergence (CD-k) or SML/PCD

• Stacked Denoising Autoencoders:  Back-propagation w/ cross-entropy loss

– Step 2: Supervised fine-tuning
• 1) Toss old model, dump parameters into MLP

• 2) (Gentle) back-propagation fine-tuning

So…

• Hybrid, single-stage training (Larochelle et al., 2012; Ororbia 
et al., 2015)

– Why not learn a generative & discriminative model at same time?

Research Efforts in Pre-Training



OR…Smarter Random Initializations

• Classical approaches

– Sample from ~U(-a, a), where is a small scalar

– Sample from ~N(0, a), where is a small standard deviation

• Fan-in-Fan-out (number inputs, number output)

– Calibrate by variances of neuronal activities

• Simple distributional schemes

– Fan-in/Fan-out Uniform

– Fan-in/Fan-out Gaussian  (good for ReLU activations)

• Orthogonal Initialization

– Use Singular Value Decomposition (SVD) to find initial 
weights

• Identity Initialization / Constraint (for RNNs)

– Does not always work unless constraint is enforced
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QUESTIONS?
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