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Generation vs. Discrimination

Generative Models Discriminative Models

* Represent both the data and Learn to directly predict the

the labels labels from the data
Often, makes use of .
conditional independence
and priors

Examples

— Naive Bayes classifier

Often, assume a simple
boundary (e.g., linear)

 Examples
— Logistic regression
— Multinoulli regression

Bayesian network

Gaussian mixtures — SVM
Single/Dual-wing harmonium — Decision tree / An ensemble
Variational autoencoder — MLP

Models of data may apply to§ ¢ Often easier to predict a
future prediction problems label from the data than to
model the data




White board time!
Deriving/crafting a GMM and
its E-M fitting process
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Expectation Maximization (EM)

* Training of GMMs with latent variables accomplished via
Expectation Maximization
— Step 1: Expectation (E-step)
* Evaluate the “responsibilities” of each cluster with the current parameters
— Step 2: Maximization (M-step)

* Re-estimate parameters using the existing “responsibilities”

* Similar to k-means (clustering) training (Friday)



Gaussian
Mixture
Example:
Start

Thanks: Andrew W. Moore Clustering with Gaussian Mixtures: Slide 6



After first
iteration

Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 7



After 2nd
iteration

Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 8



After 3rd
iteration

Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 9



After 4th
iteration

Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 10



After 5th
iteration

Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 11



After 6th
iteration

Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 12



After 20th
iteration

Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 13



Mixture Distributional Models

* You can construct any mixture model so long as you:
— Can write down the PMF/PDF of your distribution
— Can derive/produce MLE estimates of distributional parameters

 Example: Exponential Mixture Model (EMM)

Likelihood function:
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MLE Estimator:
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Mixture Distributional Models

e Other mixture models
— Bernoulli mixture model (BMM)
— Categorical mixture model (CMM) — discrete variables w/ dict size V
— Etc., etc.

* Bayesian forms of any mixture model

— Impose priors over distributional parameters and mixture weights
(priors should be conjugate — prior & posterior in same family, e.g.,
exponential family)



GMM Applications

* Feature extraction from speech data = speech recognition
systems
e Used extensively in object tracking of multiple objects

— Where # of mixture components & their means predict object locations
at each frame in video sequence

— EM algorithm used to update component means over time as video
frames update -> allows object tracking

 And much more!
— Applications similar to clustering too!

16



Taxonomy of Generative Models

Direct

Generative models
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GMMs Explicit density
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Implicit density

GAN
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Tractable density

Approximate density

Markov Chain

Fully Visible Belief Nets
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- NADE
- MADE

Variational

- PixelRNN/CNN
Change of variables models
(nonlinear ICA)

\

Markov Chain

Variational Autoencoder Boltzmann Machine

GSN
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