

The Gaussian Mixture and Expectation-Maximization

Alexander G. Ororbia II Introduction to Machine Learning CSCI-635 11/1/2023

Generation vs. Discrimination

Generative Models

- Represent both the data and the labels
- Often, makes use of conditional independence and priors
- Examples
 - Naïve Bayes classifier
 - Bayesian network
 - Gaussian mixtures
 - Single/Dual-wing harmonium
 - Variational autoencoder
- Models of data may apply to future prediction problems

Discriminative Models

- Learn to directly predict the labels from the data
- Often, assume a simple boundary (e.g., linear)
- Examples
 - Logistic regression
 - Multinoulli regression
 - SVM
 - Decision tree / An ensemble
 - MLP
- Often easier to predict a label from the data than to model the data

White board time! Deriving/crafting a GMM and its E-M fitting process

Expectation Maximization (EM)

- Training of GMMs with latent variables accomplished via Expectation Maximization
 - Step 1: Expectation (E-step)
 - Evaluate the "responsibilities" of each cluster with the current parameters
 - Step 2: Maximization (M-step)
 - Re-estimate parameters using the existing "responsibilities"
- Similar to k-means (clustering) training (Friday)

Gaussian Mixture Example: Start

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Mixture Distributional Models

- You can construct any mixture model so long as you:
 - Can write down the PMF/PDF of your distribution
 - Can derive/produce MLE estimates of distributional parameters
- Example: Exponential Mixture Model (EMM)

Likelihood function:

$$\mathcal{L}(X;\theta) = \prod_{i=1}^{N} \lambda \exp(-\lambda x_i) = \lambda^N \exp\left(-\lambda N \frac{1}{N} \sum_i x_i\right) = \lambda^N \exp\left(-\lambda \sum_i x_i\right)$$

MLE Estimator:

$$\hat{\lambda} = \frac{1}{(1/N)\sum_{i} \mathbf{x}_{i}} = \frac{N}{\sum_{i} \mathbf{x}_{i}}$$

Mixture Distributional Models

- Other mixture models
 - Bernoulli mixture model (BMM)
 - Categorical mixture model (CMM) discrete variables w/ dict size V
 - Etc., etc.
- Bayesian forms of any mixture model
 - Impose priors over distributional parameters and mixture weights (priors should be conjugate – prior & posterior in same family, e.g., exponential family)

GMM Applications

- Feature extraction from speech data → speech recognition systems
- Used extensively in object tracking of multiple objects
 - Where # of mixture components & their means predict object locations at each frame in video sequence
 - EM algorithm used to update component means over time as video frames update -> allows object tracking
- And much more!
 - Applications similar to clustering too!

QUESTIONS?