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Some Basic Statistical Learning Theory

• Capacity = ability to fit wide variety of functions

– Low → model struggles to fit training data (underfit)

– High → model can “memorize” data (overfit)

• Hypothesis space = set of functions learning 

algorithm is allowed to learn 

linear regression → linear functions 

polynomial regression → ??



Model capacity:

Ability to fit a wide variety 

of functions, can be 

controlled by choosing a 

hypothesis space.

(High capacity → model 

tends to memorize noise)

Hypothesis space:

Set of functions that 

learner is allowed to 

“select” as a solution

Generalization 

and Capacity



Fundamental Principle of 

Statistical Learning



Vapnik-Chervonenkis (VC) Dimension



Probably Approximately Correct 

(The PAC Framework)

• Learner receives samples & must select a generalization function 

(hypothesis) from certain class of possible functions

• Goal: with high probability ("probably"), the selected function will 

have low generalization error ("approximately correct")

– Learner must be able to learn the concept given any arbitrary approximation 

ratio, probability of success, or distribution of the samples

– Learner must be efficient (w.r.t. time-space complexity; bounded to 

polynomial of sample size)

– Learner should find efficient function given sample size that is polynomially 

upper bounded, further accounting for approximation/likelihood 

adjustments/bounds



Finding the Best Model



No Free Lunch Theorem

Slide credit: D. Hoiem

You can only get generalization through assumptions.  No one algorithm will 

solve all problems (some will work better than others in some instances).



How to Reduce Variance?

• Choose a simpler classifier
– Occam’s Razor:  Among competing hypotheses, the one 

with the fewest assumptions should be selected.

• Regularize the parameters
– Apply penalties / constraints

– Go Bayesian – apply prior distributions over parameters

• Get more training data
– BIG data (some theory justifies this!)

Slide credit: D. Hoiem



The Law of Large Numbers

• The (strong) law of large numbers
– In limit of infinite data, or N → ∞, sample mean converges to 

expected value 𝑆𝑛 → 𝜇 of data distribution

– Intuitively, with more data, our estimate of a quantity/moment such as 

mean, estimate becomes more accurate

• A partial justification for big data!



Arbitrary Capacity and Nonparametric Models



NN = Nearest Neighbor (1NN is K=1 Nearest Neighbor(s) Model)

Nearest Neighbor Regression

Usually used w/ feature scaling:

Can also employ feature-weighted NN:

t

Ƹ𝑡 = 𝑡𝑖

K-NN = K nearest neighbors



The K-NN Model

K = 1

Over z ∈ Z classes



Every sample in blue 

shaded zone will be 

misclassified as blue class

Every sample in blue 

shaded zone will be 

misclassified as blue class

(Lazy) Instance-Based Learning with K-NN



• For classifiers, Bayes error is lower limit of error that one can 

get with any classifier

• A classifier that achieves this error rate is an optimal 

classifier

• Probability that we are wrong: this probability is the 

probability of the less likely label

Bayes Test:



For sufficiently large training set size n, the error rate of the 1NN classifier is 

less than twice the Bayes error rate, or E* > 2E

Effect of Training Set Size



THEORY THROUGH REGRESSION
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Polynomial Curve Fitting with a Scalar

target values tn so that we minimize:

• It is zero when function y(x,w) passes exactly through each training  

data point

M

= w x j
j

j  =0
Training data set

N=10, Input x, target t

n n2 n =1

2

– With a single input variable x

– y(x,w) =  w0+w1x+w2x2+…+wMxM

M = order of polynomial,

x j denotes x raised to power j,

Coefficients w0,…,wM are collectively denoted by vector w

– Task: Learn w from training data D ={(x i,t i)}, i =1,..,N

• Can be done by minimizing an error function that minimizes misfit  
between y(x,w) for any given w and training data

• One simple choice of error function is sum of squares of error (SSE) 

between predictions y(xn,w) for each data point xn and corresponding



On Basis Functions

• In many applications, we apply some form of  

fixed-preprocessing, or feature extraction, to  

the original data variables

• If the original variables comprise the vector x,  

then the features can be expressed in terms of  
basis functions {φ j  (x)}

– By using nonlinear basis functions we allow the  
function y(x,w) to be a nonlinear function of the  

input vector x
• They are linear functions of parameters (gives them  

simple analytical properties), yet are nonlinear wrt input  

variables
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Fixed Basis Functions

Although we use linear (classification) models  
Linear-separability in feature space does not 

imply linear-separability in input space

Nonlinear transformation  

of inputs using vector of  

basis functions (x)

Original Input Space (x1,x2) Feature Space (1,2)

Basis functions are  

Gaussian with centers  

shown by crosses and  

green contours

Basis functions with increased dimensionality often used



The Architecture of 

a Polynomial 

Regressor

Basis 
function 

(𝒙𝒋)



Choosing the Order of M



Computational Bottleneck

• A recurring problem in machine learning:

– Large training sets are necessary for good 
generalization

– BUT large training sets are also computationally 

expensive to use

• Stochastic gradient descent (SGD) is an extension of 

gradient descent (GD) that offers a solution

– Moreover, it is a vehicle for generalization beyond 

training set

– Expectation may be approximated using small set of  

samples (we will also later refer to these sets as “mini-

batches” → mini-batch GD)



QUESTIONS?

Deep questions?!

Deep robots!
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