“How to Train Your Neural Network”

Alexander G. Ororbia Il
Introduction to Machine Learning
CSCI-635
11/17/2023

A Recipe for

Background : :

® Machine Learning
1. Given training data: 3. Define goal:

{xi,y;}is J

(® ’E; ’6:1 * —] : -
0 arg I].’lgll’l ;E(‘fﬂ (:I:E)? y?,)
2. Choose each of these:
— Decision function 4. Train with SGD:
= fe (:B@) (take small steps

opposite the gradient)
— Loss function

(y,y;) €R 00 = 00— Vi fo(,). v,)

- VE(fo(xi), y;)

Approaches to Differentiation

Finite Difference Method
Pro: Great for testing implementations of backpropagation

Con: Slow for high dimensional inputs / outputs
Requnred Ability to call the function f(x) on any input x

- Note: The method you learned in high-school
- Note: Used by Mathematica / Wolfram Alpha /| Maple
- Pro: Yields easily interpretable derivatives
- Con: Leads to exponential computation time if not carefully implemented
- Required: Mathematical expression that defines f(x
Automatic Differentiation - Reverse Mode
Note: Called Backpropagation when applied to Neural Nets
Pro: Computes partial derivatives of one output f(x), with respect to all inputs x; in time proportional

to computation of f(x)
Con: Slow for high dimensional outputs (e.g. vector-valued functions)

4. Automatic Di
- Note: Easy to implement. Uses dual numbers.

- Pro: Computes partial derivatives of all outputs f(x), with respect to one input x; in time proportional
to computation of f(x)

- Con: Slow for high dimensional inputs (e.g. vector-valued x)
- Required: Algorithm for computing f(x)

The Finite Difference Method

df(z) _ . fl@+h)—f(z)
The centered finite difference approximation is: dr _ hoo -
00, 7(6)~ 2€

where d; is a 1-hot vector consisting of all zeros except for the ith

entry of d;, which has value 1. R

Notes:

» Suffers from issues of
floating point precision, in
practice

* Typically only appropriate
to use on small examples
with an appropriately
chosen epsilon L >

Reverse Mode Differentiation

* Application of the chain-rule from
calculus

* Canview ANNs at level of processing

elements (PEs)— “neuronal graph”

— Follow dot-arrow diagram to get partial

derivative scalars /,/’ “‘\\
— Limited flexibility, but simple to /
understand / y
 Can view this at lowest level— H e
computation graph \
— Follow graph of operators & get partial /[|\ N

derivatives using sub-rules (sum rule,

product rule, etc.)

— Highly flexible \‘ 0 05
— Tools that do this:
 Theano:

http://deeplearning.net/software/theano/
* TensorFlow2: https://www.tensorflow.org/
* PyTorch: https://pytorch.org/ ‘Deep calculus”!

Computational Graph (Example)

Loss function

/

f = Wa| |Li =)_;.,, max(0,s; — sy, + 1)

+ R(W

@ s (scores) . ? ()
\/

R(W)

Architecture

“ _ Regularlzatlon term
(“model representation”)

White Board Time!
(Backprop & Computational Graphs)

,“z \' _’A.w '-v
WHITE BOARDTIME! = 8

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Approaches to Differentiation
	Slide 5: The Finite Difference Method
	Slide 6: Reverse Mode Differentiation
	Slide 7: Computational Graph (Example)
	Slide 8: White Board Time! (Backprop & Computational Graphs)
	Slide 11: QUESTIONS?

