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A Recipe for

Background : :

® Machine Learning
1. Given training data: 3. Define goal:
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2. Choose each of these:
— Decision function 4. Train with SGD:
= fe (:B@) (take small steps

opposite the gradient)
— Loss function
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Approaches to Differentiation

Finite Difference Method
Pro: Great for testing implementations of backpropagation

Con: Slow for high dimensional inputs / outputs
Requnred Ability to call the function f(x) on any input x

- Note: The method you learned in high-school
- Note: Used by Mathematica / Wolfram Alpha /| Maple
- Pro: Yields easily interpretable derivatives
- Con: Leads to exponential computation time if not carefully implemented
- Required: Mathematical expression that defines f(x
Automatic Differentiation - Reverse Mode
Note: Called Backpropagation when applied to Neural Nets
Pro: Computes partial derivatives of one output f(x), with respect to all inputs x; in time proportional

to computation of f(x)
Con: Slow for high dimensional outputs (e.g. vector-valued functions)

4. Automatic Di
- Note: Easy to implement. Uses dual numbers.

- Pro: Computes partial derivatives of all outputs f(x), with respect to one input x; in time proportional
to computation of f(x)

- Con: Slow for high dimensional inputs (e.g. vector-valued x)
- Required: Algorithm for computing f(x)



The Finite Difference Method
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The centered finite difference approximation is: dr _ hoo -
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where d; is a 1-hot vector consisting of all zeros except for the ith

entry of d;, which has value 1. R

Notes:

» Suffers from issues of
floating point precision, in
practice

* Typically only appropriate
to use on small examples
with an appropriately
chosen epsilon L >




Reverse Mode Differentiation

* Application of the chain-rule from
calculus

* Canview ANNs at level of processing

elements (PEs)— “neuronal graph”

— Follow dot-arrow diagram to get partial

derivative scalars /,/’ “‘\\
— Limited flexibility, but simple to /
understand / y
 Can view this at lowest level— H e
computation graph \
— Follow graph of operators & get partial /[ |\ N

derivatives using sub-rules (sum rule,

product rule, etc.)

— Highly flexible \‘ 0 05
— Tools that do this:
 Theano:

http://deeplearning.net/software/theano/
* TensorFlow2: https://www.tensorflow.org/
* PyTorch: https://pytorch.org/ ‘Deep calculus”!



Computational Graph (Example)

Loss function
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Architecture

“ _ Regularlzatlon term
(“model representation”)



White Board Time!
(Backprop & Computational Graphs)
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