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The Naive Bayes Model
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Generation vs. Discrimination agjzsaf,fflme%

Generative Models Discriminative Models
 Represent both the data and ¢ Learn to directly predict the
the labels labels from the data
 Often, makes use of e Often, assume a simple
conditional independence boundary (e.g., linear)
and priors « Examples
 Examples — Logistic regression
— Naive Bayes classifier — SVM, perceptron, discriminants
— Bayesian network — Decision tree / An ensemble
— Single/Dual-wing harmonium — MLP

— Variational autoencoder

e Often easier to predict a label

 Models of data may applyto ~ from the data than to model
future prediction problems the data
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Construction: Crafting a Naive Bayes graphical model!




What would be beyond Naive Bayes?
Answer: Bayesian Networks

/
AND THISJISTO GO~..

EVEN -FUR"TI‘%ER BEYOND!M
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