

Elemental Learning Theory

Alexander G. Ororbia II Introduction to Machine Learning CSCI-635 9/15/2023

Goal: Construct a Pipeline

Features

Test Image

Slide credit: D. Hoiem and L. Lazebnik

model

Note that this is a parametric form of learning (as opposed to non-parametric learning)

• **Test-time inference**: apply a prediction function to a feature representation of the image to get the desired output:

Learning Algorithm A

- Uses training values for the target function to induce a hypothesized definition that fits these examples and hopefully generalizes to unseen examples
- In statistics, learning to approximate a continuous function is called *regression*

– Discrete functions = *classification* or categorization

 Attempts to minimize some measure of error (*loss function*) such as *mean squared error*

ML Terminology

Regression

- -Predict a numerical value t given some input
 - Learning algorithm has to output function $f: \mathbb{R}^n \rightarrow \mathbb{R}$

– where *n* =no of input variables (or *D*)

- Classification
 - If *t* value is a label (categories): $f: \mathbb{R}^n \rightarrow \{1, ..., k\}$
- Ordinal Regression
 - -Discrete values, ordered categories

Spectrum of supervision

Definition depends on task

Approximate Optimization

Beware the Challenges of Optimization!

Gradient descent might not always be best choice for optimization!

Evaluation of Learning Systems

• Experimental

- Conduct controlled cross-validation experiments to compare various methods on variety of benchmark datasets
- Gather data on performance, e.g. test accuracy, training-time, testing-time
- Analyze differences for statistical significance (frequentist measures)

Theoretical

- Analyze algorithms mathematically and prove theorems about their:
 - Computational complexity
 - Ability to fit training data
 - Sample complexity (number of training examples needed to learn an accurate function)

Usefulness of statistical learning theory

- Provides intellectual justification that machine learning algorithms can work
- But rarely used in practice with deep learning
- This is because:
 - The bounds are loose
 - Also difficult to determine capacity of deep learning algorithms

Generalization

Resting on the IID assumption!

- Challenge of ML is generalization
 - Perform well on previously unseen outputs
- ML training algorithm reduces training error, which is a task of optimization
- What differentiates ML from optimization is that we want test error (generalization error) to be low as well
- Generalization error definition
 - Expected error on a new input
 - Expectation wrt distribution encountered in practice

Generalization

Training set (labels known)

Test set (labels unknown)

• How well does a learned model generalize from the data it was trained on to a new test set?

Factors of Generalization

- Components of generalization error
 - Bias: how much the average model over all training sets differ from the true model?
 - Error due to inaccurate assumptions/simplifications made by the model
 - Variance: how much models estimated from different training sets differ from each other
 - (Irreducible) Noise

Bias-Variance Tradeoff

- <u>Underfitting</u>: model is too "simple" to represent all the relevant class characteristics
 - High bias and low variance

You did bad!

- High training error and high test error
- **Overfitting:** model is too "complex" and fits irrelevant characteristics (noise) in the data
 - Low bias and high variance
 You tried too hard!
 - Low training error and high test error

The Bias-Variance Trade-off

See the following for explanations of bias-variance:

- <u>http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf</u>
- Bishop's "Neural Networks" book

