Elemental Learning Theory

Alexander G. Ororbia II
Introduction to Machine Learning
CSCI-635
9/15/2023

Goal: Construct a Pipeline

The Functional Machine

We are engaged in a form of Learning Framework function
approximation

Note that this is a parametric form of learning (as opposed to non-parametric learning)

- Test-time inference: apply a prediction function to a feature representation of the image to get the desired output:

$$
\begin{aligned}
\mathrm{f}(8) & =\text { "apple" } \\
\left.\mathrm{f}()^{3}\right) & =\text { "tomato" } \\
\mathrm{f}(\mathrm{~m}) & =\text { "cow" }
\end{aligned}
$$

Learning Algorithm A

- Uses training values for the target function to induce a hypothesized definition that fits these examples and hopefully generalizes to unseen examples
- In statistics, learning to approximate a continuous function is called regression
- Discrete functions = classification or categorization
- Attempts to minimize some measure of error (loss function) such as mean squared error

ML Terminology

- Regression
-Predict a numerical value t given some input
- Learning algorithm has to output function $f: \mathrm{R}^{n} \rightarrow \mathrm{R}$ - where $n=$ no of input variables (or D)
- Classification
- If t value is a label (categories): $f: \mathrm{R}^{n} \rightarrow\{1, . ., k\}$
- Ordinal Regression
-Discrete values, ordered categories

Spectrum of supervision

Approximate Optimization

Beware the Challenges of Optimization!

Gradient descent might not always be best choice for optimization!

Evaluation of Learning Systems

- Experimental

- Conduct controlled cross-validation experiments to compare various methods on variety of benchmark datasets
- Gather data on performance, e.g. test accuracy, training-time, testing-time
- Analyze differences for statistical significance (frequentist measures)
- Theoretical
- Analyze algorithms mathematically and prove theorems about their:
- Computational complexity
- Ability to fit training data
- Sample complexity (number of training examples needed to learn an accurate function)

Usefulness of statistical learning theory

- Provides intellectual justification that machine learning algorithms can work
- But rarely used in practice with deep learning
- This is because:
- The bounds are loose
- Also difficult to determine capacity of deep learning algorithms

Generalization

Resting on the IID assumption!

- Challenge of ML is generalization
- Perform well on previously unseen outputs
- ML training algorithm reduces training error, which is a task of optimization
- What differentiates ML from optimization is that we want test error (generalization error) to be low as well
- Generalization error definition
- Expected error on a new input
- Expectation wrt distribution encountered in practiçe

Generalization

Training set (labels known)

Test set (labels unknown)

- How well does a learned model generalize from the data it was trained on to a new test set?

Factors of Generalization

- Components of generalization error
- Bias: how much the average model over all training sets differ from the true model?
- Error due to inaccurate assumptions/simplifications made by the model
- Variance: how much models estimated from different training sets differ from each other
- (Irreducible) Noise
- Underfitting: model is too "simple" to represent all the relevant class characteristics
- High bias and low variance You did bad!
- High training error and high test error
- Overfitting: model is too "complex" and fits irrelevant characteristics (noise) in the data
- Low bias and high variance You tried too hard!
- Low training error and high test error

The Bias-Variance Trade-off

$E(M S E)=$ noise $^{2}+$ bias $^{2}+$ variance

Unavoidable
error

Error due to variance of training samples

See the following for explanations of bias-variance:

- http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf
- Bishop's "Neural Networks" book

QUESTIONS?

Deep questions?!

