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Uncertainty

Let action A; = leave for airport ; minutes before flight
Will A; get me there on time?

Problems:

L.
2.
% 4
4

Set of actions:
{A_1,A 2.A... AT}

partial observability (road state, other drivers' plans, etc.)
noisy sensors (traffic reports)

utnc)ertain (non-deterministic) action outcomes (flat tire,
etc.

Immense complexity of modeling and predicting traffic

Hence a purely logical approach either

1.
2.

risks falsehood: “A,s will get me there on time”, or

leads to conclusmns that are too weak for decision
making: will get me there on time if there's no
aCCIdent on %he bridge and it doesn't rain and my tires
remain intact etc etc.”

A 440 Might reasonably be said to get me there on time but I'd have

to stay overnight in the airport ..



Probability in Context

Probability theory

« Branch of mathematics concerned with analysis of random phenomena

 Randomness: a non-order or non-coherence in a sequence of symbols or steps, such
that there is no intelligible pattern or combination

- Central objects of probability theory are:
random variables, stochastic processes, and events

« Mathematical abstractions of non-deterministic events or measured quantities that may
either be single occurrences or evolve over time in an apparently random fashion

Uncertainty
— Alack of knowledge about an event

— Can be represented by a probability
« EX: role adie, draw a card

— Can be represented as an error

A statistic (a measure in statistics)
— Can use probability in determining that measure



Founders of Probability Theory

e v’I :\i- '/ r NG %
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Blaise Pascal Pierre Fermat
(1623-1662, France) (1601-1665, France)

Laid the foundations of the probability theory in a
correspondence on a dice game posed by a French nobleman



Sample Spaces — Measures of Events

Collection (list) of all possible outcomes
Experiment: Roll a die!

— e.9.: All six faces of adie:

oo

(e} o o0 (e}
(e}
o lo) o

Experiment: Draw a card!
e.g.. All 52 cards in a deck:

= &




Types of Events

Event
— Subset of sample space (set of outcomes of experiment)

Random event
— Different likelihoods of occurrence

Simple event
— Outcome from a sample space with one characteristic in simplest form

— e.g.: King of clubs from a deck of cards

Joint event
— Conjunction (AND, D “7); disjunction (OR,Vv)
— Contains several S|mple events

— e.g.: Ared ace from a deck of cards,
(ace on hearts OR ace of diamonds)



Visualizing Events

Excellent ways of determining probabilities, can be built from data

Contingency tables (nice way to look at probability):

Tree diagrams:

Full
Deck
of Cards

Ace Not Ace Total
Black 2 24 26
Red 2 24 26
Total 4 48 52
Ace
Red /
__ Cards - NotanAce
~Black __— Ace
Cards

——— NotanAce




Maximum Likelihood Estimation (MLE)

Uses relative frequencies as estimates
Maximizes likelihood of training data D under a simple model M, or P(D|M)

With discrete data, we can employ a counting function c(A=a), that
returns frequency of a particular value taken on by attribute A
* Note: c(A=a) is actually c(A=a, D), where D is a dataset

Issue: What happens with sparse data?

You’re thinking like a
frequentist now!



w; is particular word in W,

An Example Un|gram MOde| where W is set of unique

words (or vocabulary)

* Do not use history:

Probability of a word .
given a word > P(W,leW,I)NP(WI):ZC(W(’)~)
C\W
W

sequence/history

i live in osaka . </s> P(nara) = 1/20 = 0.05
| am a graduate student . </s> P(i) =2/20=0.1
my school is in nara . </s> P(</s>) =3/20 = 0.15

P(W=ilive in nara . </s>) =
0.1*0.05*0.1*0.05*0.15*0.15=5.625* 10"’



Axioms of Probability

Given 2 events: X, y

1) P(XXORY)=P(x)+P(y) - P(x AND y);
for mutually exclusive events, P(x AND y) =0
2)  P(xandy)=P(x)* P(y|x), also written as P(y | x) = P(x and y)/P(X)
3) Ifxandy are independent, P(y | X) = P(y), thus P(x AND y) = P(X) * P(y)

4)  P(X)>P(x) *P(y); P(y)>P(x) * P(y)



Probablility Mass Function (PFM)

e The domain of P must be the set of all possible states of x.

e Vzr € x,0 < P(x) < 1. An impossible event has probability 0 and no state can
be less probable than that. Likewise, an event that is guaranteed to happen
has probability 1, and no state can have a greater chance of occurring.

® > .o P(x) = 1. We refer to this property as being normalized. Without
this property, we could obtain probabilities greater than one by computing
the probability of one of many events occurring.

Example: uniform distribution: P(X — gjz) — —



Probabllity Density Function (PDF)

e The domain of p must be the set of all possible states of x.

e Vx € x,p(x) > 0. Note that we do not require p(x) < 1.
o [p(x)dx=1.

Example: uniform distribution: u(x; a,b) = .






Types of Uncertainty

For example, to drive your car in the morning:

* It must not have been stolen during the night

e It must not have flat tires

» There must be gas in the tank

 The battery must not be dead

 The ignition must work

 You must not have lost the car keys

 No truck should obstruct the driveway

 You must not have suddenly become blind or paralytic
Etc...

Not only would it not be possible to list all of them, but
would trying to do so be efficient?




Probabilistic Reasoning

Types of probabilistic reasoning

 Reasoning using probabilistic methods

» Reasoning with uncertainty

 Rigorous reasoning vs heuristics or biases
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