

On Decision Trees

Alexander G. Ororbia II Introduction to Machine Learning CSCI-635 11/8/2023

The Decision Tree Hypothesis

Decision Tree Hypotheses

Propose a function representing the mapping for (input, output) pairs in the training data.

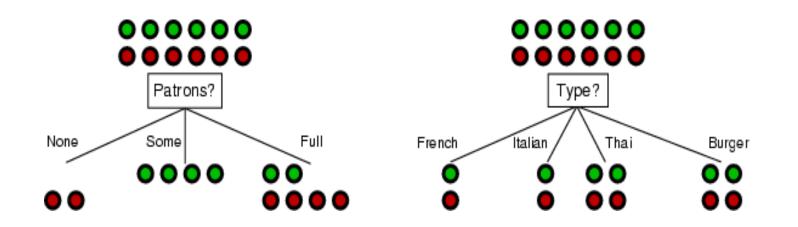
- · Classification: (attributes, class), e.g. 'restaurant'
- Regression: (attributes, value), e.g. \$ prediction

Geometry of Decision Boundaries

Our decision trees *split* individual attribute domains, producing axis-aligned rectangular decision regions Some attributes are *correlated* (i.e. vary together), leading to non-rectangular regions (e.g. for classes) However, even with an arbitrary linear separator, we cannot always represent the target function *f*.

Attribute Selection for Decision Tree Learning

- •A Good Attribute
 - Splits examples into (*ideally*) "all positive" or "all negative" subsets



•For Example Above (Selecting Tree Root Node)

• *Patrons?* is a better choice than *Type?* as attribute to select

It's white board time! Crafting **topdown induction** for decision trees!

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Class-Labeled Training Tuples from the AllElectronics Customer Database

		y	outh	middle_aged	senior		
income	student	credit_rating	class	income	student	credit_rating	class
high high medium low medium	no no no yes yes	fair excellent fair fair excellent	no no no yes yes	medium low low medium medium	no yes yes yes no	fair fair excellent fair excellent	yes yes no yes no
		income	student	credit_rating	class]	
		high	no	fair	yes	1	

income	student	credit_rating	class	
high	no	fair	yes	
low	yes	excellent	yes	
medium	no	excellent	yes	
high	yes	fair	yes	

The Top-Down Induction Algorithm

Algorithm: Generate_decision_tree. Generate a decision tree from the training tuples of data partition, *D*.

Input:

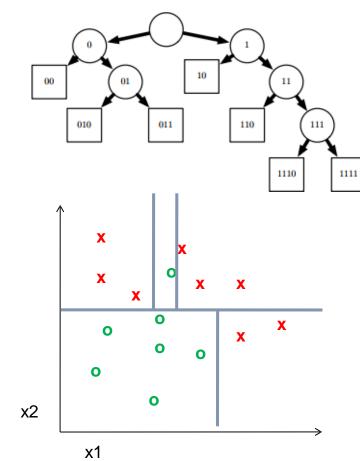
- Data partition, *D*, which is a set of training tuples and their associated class labels;
- attribute_list, the set of candidate attributes;
- Attribute_selection_method, a procedure to determine the splitting criterion that "best" partitions the data tuples into individual classes. This criterion consists of a splitting_attribute and, possibly, either a split-point or splitting subset.

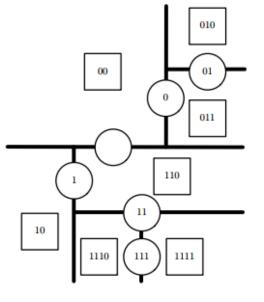
Output: A decision tree.

Method:

- (1) create a node *N*;
- (2) **if** tuples in *D* are all of the same class, *C*, **then**
- (3) return *N* as a leaf node labeled with the class *C*;
- (4) if attribute_list is empty then
- (5) return N as a leaf node labeled with the majority class in D; // majority voting
- (6) apply Attribute_selection_method(D, attribute_list) to find the "best" splitting_criterion;
- (7) label node N with splitting_criterion;
- (8) if splitting_attribute is discrete-valued and multiway splits allowed then // not restricted to binary trees
- (9) *attribute_list \le attribute_list splitting_attribute; //* remove *splitting_attribute*
- (10) **for each** outcome *j* of *splitting_criterion*
 - // partition the tuples and grow subtrees for each partition
- (11) let D_j be the set of data tuples in D satisfying outcome j; // a partition
- (12) **if** D_j is empty **then**
- (13) attach a leaf labeled with the majority class in D to node N;
- (14) else attach the node returned by Generate_decision_tree(D_j, attribute_list) to node N; endfor
- (15) return N;

Decision Trees – Aggregated Piecewise Functions





Divides (input) space into regions (nodes on lines categorize samples, leaf nodes on regions correspond to examples received). Piecewise-constant function (cannot learn function with more local maxima than number of training samples).

QUESTIONS?