

Elemental Learning Theory

Alexander G. Ororbia II Introduction to Machine Learning CSCI-635 9/13/2023

Example: Linear Least Squares

Suppose we want to find the value of \boldsymbol{x} that minimizes

$$f(x) = \frac{1}{2} ||Ax - b||_2^2$$

There are specialized linear algebra algorithms that can solve this problem efficiently. However, we can also explore how to solve it using gradient-based optimization as a simple example of how these techniques work.

First, we need to obtain the gradient:

$$\nabla_{\boldsymbol{x}} f(\boldsymbol{x}) = \boldsymbol{A}^{\top} (\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}) = \boldsymbol{A}^{\top} \boldsymbol{A}\boldsymbol{x} - \boldsymbol{A}^{\top} \boldsymbol{b}.$$

Algorithm 4.1 An algorithm to minimize $f(x) = \frac{1}{2} ||Ax - b||_2^2$ with respect to x using gradient descent, starting from an arbitrary value of x.

Set the step size (ϵ) and tolerance (δ) to small, positive numbers. while $||A^{\top}Ax - A^{\top}b||_2 > \delta$ do $x \leftarrow x - \epsilon (A^{\top}Ax - A^{\top}b)$ end while

Essential role of calculus

ML in a Nutshell: Key Ideas

Representation / Modeling Data format, organization Model structure, "architecture"

Evaluation

"Goodness" of model on data sample Guides optimization / model fitting

Optimization

"Model fitting" -- evolution/adjustment of parameters, error correction

Types of Learning

- Supervised (inductive) learning $\{\mathbf{x}_n \in \mathbb{R}^D, \mathbf{y}_n \in \mathbb{R}^C\}_{n=1}^N$
 - Training data includes desired outputs, $(\mathbf{x}_i, \mathbf{y}_i = f(\mathbf{x}_i))$
 - Prediction / Classification (discrete labels), Regression (real values)
- Unsupervised learning $\{\mathbf{x}_n \in \mathbb{R}^D\}_{n=1}^N$
 - Training data does not include desired outputs
 - Clustering / probability distribution estimation
 - Finding association (in features)
 - Dimension reduction
- Semi-supervised learning $\{\mathbf{x}_n \in \mathbb{R}^D, \mathbf{y}_n \in \mathbb{R}^C\}_{n=1}^N \cup \{\mathbf{x}_m \in \mathbb{R}^D\}_{m=1}^M, M \gg N$
 - Training data includes a few desired outputs
- Reinforcement learning $\{\mathbf{x}_t \in \mathbb{R}^D, r(\mathbf{x}_{t+1}, a_t) \in \mathbb{R}\}_{t=1}^{T=\infty}$
 - Rewards from sequence of actions
 - Decision making (robot, chess machine)

Reward function

Visualizing the Types of Learning

A Typical Supervised Learning Pipeline

A Typical Unsupervised Learning Pipeline

• Unsupervised learning

Statistical Learning in Practice

- Understanding domain, prior knowledge, and goals
- Data integration, selection, cleaning, pre-processing, etc.
- Learning model(s)
- Interpreting results
- Consolidating and deploying discovered knowledge
- Loop

The science of the problem

Statistical Learning in Practice

- Understanding domain, prior knowledge, and goals
- Data integration, selection, cleaning,

(You are here!)

CSCI 635

- pre-processing, etc.
- Learning model(s)
 - Interpreting results

What big data/infrastructure courses help with

- The problem helps with this!
- Consolidating and deploying discovered knowledge
- Loop

Industry dictates this (machine learning engineering)

Training Experience

- Direct experience: Given sample input and output pairs for a useful target function
 - Checker boards labeled with the correct move, e.g. extracted from record of expert play
- Indirect experience: Given feedback which is not direct I/O pairs for a useful target function
 - Potentially arbitrary sequences of game moves and their final game results (i.e., a score or cumulative function output)
- Credit/Blame Assignment Problem: How to assign credit or blame to individual moves given only indirect feedback?
 - The problem of credit assignment = appears everywhere in statistical learning

Training vs. Test Distribution

- Generally assume that the training and test examples are independently drawn from the same overall distribution of data
 – IID: Independently and identically distributed
- If test distribution is different, requires *transfer learning*

Key Idea: A collection of random variates *must* fall under same probability distribution *and* are mutually independent

Identical = no overall trends/fluctuations in (same) distribution of collected objects *Independent* = collected objects are all independent events; value of one item gives no knowledge about values of others (& vice versa)

- *Training* = process of making the system able to learn
- **Testing** = process of seeing how well the system learned
 - Simulates "real world" usage
 - Training set and testing set should come from same distribution
 - Need to make some **assumptions** or introduce a bias
- **Deployment** = actually using the learned system in practice

Learning Algorithms

- Definition (well-posed learning problem):
 - A computer program is said to learn from experience E
 - with respect to some class of tasks T and performance measure P,
 - if its performance at task T, as measured by P, improves with experience E

Machine Learning Task Description

- Usually described in terms of how the machine learning system should process an example
- An example is a collection of features that have been quantitatively measured for some object/ event that we want the ML system to process
- Typically represent an example as a vector \boldsymbol{x} where each entry x_i of the vector is another feature

Features (What Could be "Inside" of x)

• Raw pixels

• Histograms

• GIST descriptors

- Training: given a *training set* of labeled examples
 {(x₁,y₁), ..., (x_N,y_N)}, estimate the prediction function f by
 minimizing the prediction error on the training set
- Testing: apply f to a never before seen test example x and output the predicted value y = f(x)

Note that this is a parametric form of learning (as opposed to non-parametric learning)

• **Test-time inference**: apply a prediction function to a feature representation of the image to get the desired output:

History of Machine Learning

- 1950s
 - Samuel's checker player
 - Selfridge's Pandemonium
- 1960s:
 - Neural networks: Perceptron
 - Pattern recognition
 - Learning in the limit theory
 - Minsky and Papert prove limitations of Perceptron
- 1970s:
 - Symbolic concept induction
 - Winston's arch learner
 - Expert systems and the knowledge acquisition bottleneck
 - Quinlan's ID3
 - Michalski's AQ and soybean diagnosis
 - Scientific discovery with BACON
 - Mathematical discovery with AM

History of ML (cont.)

- 1980s:
 - Advanced decision tree and rule learning
 - Explanation-based Learning (EBL)
 - Learning and planning and problem solving
 - Utility problem
 - Analogy
 - Cognitive architectures
 - Resurgence of neural networks (connectionism, backpropagation)
 - Valiant's PAC Learning Theory
 - Focus on experimental methodology
- 1990s
 - Data mining
 - Adaptive software agents and web applications
 - Text learning
 - Reinforcement learning (RL)
 - Inductive Logic Programming (ILP)
 - Ensembles: Bagging, Boosting, and Stacking
 - Bayes Net learning

History of ML (cont.)

- 2000s
 - Support vector machines
 - Kernel methods
 - Graphical models
 - Statistical relational learning
 - Transfer learning
 - Sequence labeling
 - Collective classification and structured outputs
 - Computer Systems Applications
 - Compilers
 - Debugging
 - Graphics
 - Security (intrusion, virus, and worm detection)
 - Email management
 - Personalized assistants that learn
 - Learning in robotics and vision

- Deep Learning