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Machine Learning:
Elements of Linear Algebra

Alexander G. Ororbia |l
Introduction to Machine Learning
CSCI-635
8/30/2023

Special thanks to: Sargur N. Srihari



This Is a Crash Course
Review...

- Not a comprehensive survey of all of linear algebra

- Focused on subset most relevant to machine learning

- For a larger subset/treatment:

Linear Algebra by Georgi E. Shilov

- Also read: “Linear Algebra for Dummies”



What Is Linear Algebra?

* Linear algebra is the branch of mathematics
concerning linear equations such as

— In vector notation we say a'x=b
— Called a linear transformation of a

* Linear algebra is fundamental to geometry, for
defining objects such as lines, planes, rotations

Linear equation a;z;+.....+a,xz,=b
defines a plane in (z,,..,x,) space
Straight lines define common solutions
to equations

Linear algebra is used
throughout engineering
(based on continuous math)




C = proper subset (not the whole thing) C=subset

4 = there exists

YV = for every

€= element of Mathematical Notation
|J = union (or) In CSCI 635

(] = intersection (and)

s.t.= such that w.r.t. = with respect to

= 1mplies

<= 1f and only 1f
> = sum 11 = muttiplication
\ = set minus

- = therefore



Scalars

- A scalar Is a single number
Integers, real numbers, rational numbers, etc.

Denoted with italic font:
a,n,x

On number spaces/domains:

QR All real (continuous) numbers

Z Z All integers

N All natural (counting) numbers




Vectors

An array of numbers arranged in order
Each no. identified by an index

Written in lower-case bold such as x
— its elements are in italics lower case, subscripted

L1
L2

_ “All real
A N R"™ = Rnx . numbers”
Ln
If each elementisin R then x isin R"
We can think of vectors as points in space
— Each element gives coordinate along an axis



Matrices

e 2-D array of numbers
— S0 each element identified by two indices

* Denoted by bold typeface A

— Elements indicated by name in italic but not bold

e A, is the top left entry and A, ,is the bottom right entry

« We can identify nos in vertical column j by writing : for the
horizontal coordinate

[ Al,l Al,z ]
A2,1 Az,z '

T The “slice”
Column operator

o A, is " row of A, A_is M column of A

* If A has shape of height m and width n with
real-values then AeR™



Tensor

Sometimes need an array with more than two
axes

— E.g., an RGB color image has three axes

A tensor is an array of numbers arranged on a
regular grid with variable number of axes

Denote a tensor with this bold typeface: A
Element (4,7,k) of tensor denoted by A,

Types of notation accepted (just be consistent & mean what you write):

Rlxlxl _ Rlxl _ Rl — R



Shapes of Tensors

3d-tensor

2d-tensor

=1

D

1d-tensor

Thl
T
::"ﬁ:.l.-.-.-.-.-.-
::.q:.l..l.l.l.l..l.l
::.:—.I \m\m\m\m\m\nm
:.—.”:.l \m\m\m\m\m\nm
::b%l.l.l.l.l.l.l

:.l_.l.l.l.l,.l.l
TNNNNNN

\m\m\m\n\n\n\n
\m\m\m\m\n\n\n
\m\m\m\n\n\n\n
\m\m\m\m\n\n'nm
\m\m\m\m\n\n\m
\m\m\m\m\m\n\s
\m\m\m\m\n\n\n
TN NNNNN

|

4d-tensor

6d-tensor

5d-tensor D

=4

D




Transpose of a Matrix

* An important operation on matrices
* The transpose of a matrix A is denoted as A’
* Defined as

(A1), =4,

— The mirror image across a diagonal line

 Called the main diagonal , running down to the right
starting from upper left corner

- - - - ::F "y _ — —
‘d‘u ‘qlz ‘413 A1.1 "42.1 AE.I a ‘\\i;i Am ‘42.1 ‘43.1
T - r_
A=| A, A, A, |=A4 = A, 4, A, A= ‘qu . = A = Au Az,z "13,2

A3,1 AE AE A AE AE I AE.l AE 2

(AB)T — BTAT € Useful property of transpose



Vector as Special Case of Matrix

» Vectors are matrices with a single column
» Often written in-line using transpose

r=|x,.,z|"

T,
Pl v =
= —{.:.1,.1.2,...&”]

A scalaris a matrix with one element
|
a=a T pixl



Matrix Addition/Subtraction

. Assume column-major matrices (for efficiency)

.- Add/subtract operators follow basic properties of normal

add/subtract

- Matrix A + Matrix B iIs computed element-wise

0.5

-0.7

-0.69

1.8

0.5

-0.7

-0.69

1.8

o+.5=1.0

7-7=-14

-.69-.69 =-1.38

1.8+1.8=3.6




Matrix Addition

* We can add matrices to each other if they have

the same shape, by adding corresponding
elements

— If A and B have same shape (height m, width n)
C=A+B= O-s,_.a = Ai_j+B£._j

* A scalar can be added to a matrix or multiplied
by d Scalar D=aB+c=>Di.‘j=ﬂBm+c

 Less conventional notation used in ML:

— Vector added to matrix c¢=4+b=c_ =4 +b
 Called broadcasting since vector b added to each row of A




Multiplying Matrices

* For product c=4aBto be defined, 4 has to have
the same no. of columns as the no. of rows of B

— If A Is of shape mxn and B is of shape nxp then
matrix product C is of shape mxp

Lk kg

C:AB=>GI._J.:;A. B

* Dot product between two vectors x and y of
same dimensionality is the matrix product 'y

* We can think of matrix product C=AB as
computing ¢, the dot product of row 7 of A and

column 5 of B




Matrix-Matrix Multiply

. Vector-Vector multiply (dot product)

0.5

-0.7

-0.69

1.8

0.5

-0.7

-0.69

1.8

- Matrix-Matrix multiply (outer product)

- The usual workhorse of machine learning

. Vectorizes sums of products (builds on dot product)

(.5* .5) + (-.7 * -.69)

(5*-7)+ (-7 *1.8)

(-.69 * .5) + (1.8 * -.69)

(-89 *-.7) + (1.8 * 1.8)




Referred to sometimes as matrix-matrix product or matrix-vector
product (or multiply)



Matrix Product Properties

» Distributivity over addition: A(B+C)=AB+AC

 Associativity: A(BC)=(AB)C

* Not commutative: AB=BA iIs not always true

* Dot product between vectors is commutative:
rly=y'x

* Transpose of a matrix product has a simple
form: (AB)'=B'A!



Hadamard Product

- Multiply each A(l, J) to each corresponding B(i, )

- Element-wise multiplication

0.5 | -0.7 ® 0.5 | -0.7 5*.5=.25 -7 *.7=.49

-0.69( 1.8 -0.69| 1.8 -.69 * -.69 = 4761 1.8*%1.8=3.24




Elementwise Functions

- Applied to each element (i, |) of matrix/vector argument

- Could be cos(.), sin(.), tanh(.), etc. (the “.” means argument)

- Identity P(v) =v

- Logistic Sigmoid: o(v) =o(v) = 1 é_v

_ exp(v)
. Softmax. #(Vv) = S exp(ve)

. Linear Rectifier: ¢(v) = max(0, v)

~

v € R¢

0

@ (-1.4)

@(1.0)="1
1.0 | -14 B
¢( -0.69 | 1.8 ) - (p(-0.68) =0

p(1.8)=1.8




Why Do We Care?
Computation Graphs

Linear algebra
operators
arranged in a

wr%'% we=— directed graph!

’IU}. =w5+wﬁ




A Simple Linear Predictor




A Simple Linear Predictor




A Simple Linear Predictor

........... 'b"_"”
Z=ZO+Z1+ZZ




A Simple Linear Predictor




Vector Form (One Unit)

This calculates activation value of single (output)
unit that Is connected to 3 (Input) sensors.

@(Wy * Xg+Wp * X1 +Wy * Xy)




Vector Form (Two Units)

This vectorization easily generalizes to multiple (3)
sensors feeding into multiple (2) units.

P(Wy * Xg+Ww; * X1 +W, * X3)

P(W3 * Xg+WwW, * X1 +Wg * X3)

Known as vectorization!



Now Let Us Fully
Vectorize This!

This vectorization Is also important for

formulating mini-batches.

(Good for GPU-based processing.)

@(wy * Xo+...)

@e(Wp * X3+ ..)

@(wz * Xg+...)

@(Wz * X3+ ..)




Tensors In Machine Learning

A linear classifier y= Wz +b
!

02 |-05| 01 | 20 56 11 -96.8 | catscore

stretch pixels into single column

Vector x is converted
into vector y by

multiplying x by a matrix W

15 [ 13 | 21 | 00 | |231| 4| 32 | — [ 437.9 | dog score

0 (025 0.2 | -0.3 -1. ;
input image 24 i 61.95 | ship score

W 2 b flzi; W, b)

A linear classifier with bias eliminated y= Wz

02 |-05|01 | 20 56 1.1 02 |-05|01 |20 11 56

15 |13 (21|00 | [231|4 (32| «— || 15 (13|21 |00 |32 [|]|231

0 |025|02]-03 24 1.2 0 |025|02|-03]-12 24

W 2 b 1% b 5




ldentity and Inverse Matrices

» Matrix inversion is a powerful tool to analytically
solve Ax=b

* Needs concept of Identity matrix
* |dentity matrix does not change value of vector
when we multiply the vector by identity matrix

— Denote identity matrix that preserves n-dimensional
vectors as /,

—Formally 1 er™ and  vxeR"Ix=x
— Example of I,

= O =
o = o
i == R




Norms

» Used for measuring the size of a vector
 Norms map vectors to non-negative values

* Norm of vector z = [z,,..,2 |T IS distance from
originto =
— It Is any function f that satisfies:
flz)=0=z=0
flx+y)< f(m)+f(y) Triangle Inequality
VaeR f(aa:):‘(x‘f(m)




IVidI NS Loalnning

* Definition: 1
el =[Z\w, ]
— L? Norm iy |
« Called Euclidean norm

— Simply the Euclidean distance
between the origin and the point «
— written simply as ||| “

— Squared Euclidean norm is same as z'x

_Js =92

— L1 Norm

« Useful when 0 and non-zero have to be distinguished
— Note that L? increases slowly near origin, e.g., 0.1°=0.01)

- L Norm  Jle||_ =madls|

e Called max norm

30



The Frobenius Norm

Similar to L4 norm

(3]

A=| 0 2 i 4| =Va+1+25+.+1=16
1




Norms Can Serve as Building Blocks
for Distance Measurements!

 Distance between two vectors (v, w)

— dist(v,w)=||v-w||

— \/(”1 — *wl)i' +..+ (*u“_ - wn)g




Special kind of Matrix: Symmetric

* A symmetric matrix equals its transpose: A=A"T
— E.g., a distance matrix is symmetric with A,,=A

@ sl sl lale it a bcde f
a o0 184 222 177 216 231
b 184 0 45 123 128 200 b
[:> c 222 45 0 129 121 203 l:> 9
o o d 177 123 129 0 46 83
@ e 216 128 121 46 0O 83
f 231 200 203 83 83 O f AT
Raw data Graphical View

— E.g., covariance matrices are symmetric
{ | R 0 0 \

13 .13
A5 15 0 0
|

1
5. JE 1 25 0 0
15 15 2 1 0 O

0 0 0 0 | 10

\ 0 0 {0 0 10 1 )




Deep questions?!

Deep robots!



Linear Transformation

o Ax=b

—where AeR™ and beR”
— More explicitly

A x Jr,nI”::r_T Jr....Jr,nIm.?:r'T = b:

1

Ax +Ax +. . +A x = bj

Ax+4d x+..+4 x =b
i i m2 2 nn m H

n equations in
n unknowns

A, -

A

it

&y

x=|

X
]

bf

b,

nxmn

nxl

nXxl1

Can view A as a linear transformation
of vector = to vector b

« Sometimes we wish to solve for the unknowns
x ={z,..,x,} when A and b provide constraints



Use of a Vector in Regression

* A design matrix
— N samples, D features

# hours # hours # classes Grade
i layi . |
Student #1 | 10 3 0 * 87
Student #2 20 2 75
Student #3 <) 1 o 63

)

* Feature vector has three dimensions
* This is a regression problem



Use of norm in Regression

* Linear Regression
x. a vector, w: weight vector

y(zw) = wytwr+.tw,x, = wle

With nonlinear basis functions ¢, 'f--_%

y(z,w) = w, + z w,$ (z) | H\n. P4 4

j=1

| oss Function

" 1 | A +
E(w) = Ez{y(fﬂ.,,,:w)— t}+ 5 | w’ ||
n=1

Second term is a weighted norm
called a regularizer (to prevent overfitting)






Matrix Inverse

* Inverse of square matrix A defined as  474=I

 \We can now solve Ax=>b as follows:
Ax=b
A'Ax=A"b
Ix=A"b
x=A"b

* This depends on being able to find A-!

e If A1 exists there are several methods for
finding it

Numerically unstable, but useful for abstract analysis



Closed-form solutions

e Two closed-form solutians
1.Matrix inversion &z=A-1b
2.GGaussian elimination

* |f A-lexists, the same A-! can be used for any
given b

— But A-! cannot be represented with sufficient
precision

— It is not used in practice
« Gaussian elimination also has disadvantages

— numerical instability (division by small no.)
— O(n?) for n.x n matrix



Invertibility

- Matrix can’t be inverted if...

. More rows than columns
. More columns than rows

- Redundant rows/columns (“linearly dependent”,
“low rank”)



Matrix Rank

Matrix rank is defined as (a) maximum number of linearly
iIndependent column vectors in matrix or (b) maximum
number of linearly independent row vectors in matrix
(equivalent definitions)

Linear independence/dependence

1 2

4 5

5 7

3
.

6

9
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