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This is a Crash Course 

Review…

• Not a comprehensive survey of all of linear algebra

• Focused on subset most relevant to machine learning

• For a larger subset/treatment: 

 Linear Algebra by Georgi E. Shilov

• Also read: “Linear Algebra for Dummies” 



Linear algebra is used 

throughout engineering 

(based on continuous math)

What is Linear Algebra?



= multiplication

Mathematical Notation 

in CSCI 635

w.r.t. = with respect to



Scalars

• A scalar is a single number

• Integers, real numbers, rational numbers, etc.

• Denoted with italic font:

All real (continuous) numbers

All integers

All natural (counting) numbers

On number spaces/domains:



Vectors

“All real 

numbers”



The “slice” 

operator



Types of notation accepted (just be consistent & mean what you write):



D = 1 D = 2 D = 3

D = 4 D = 5 D = 5



 Useful property of transpose



Vector as Special Case of Matrix



Matrix Addition/Subtraction
• Assume column-major matrices (for efficiency)

• Add/subtract operators follow basic properties of normal 
add/subtract

• Matrix A + Matrix B is computed element-wise

0.5 -0.7

-0.69 1.8

0.5 -0.7

-0.69 1.8

.5 + .5 = 1.0 -.7 - .7 = -1.4

-.69 - .69 = -1.38 1.8 + 1.8 = 3.6
+ =







Matrix-Matrix Multiply

• Matrix-Matrix multiply (outer product)

• Vector-Vector multiply (dot product)

• The usual workhorse of machine learning

• Vectorizes sums of products (builds on dot product)

0.5 -0.7

-0.69 1.8

0.5 -0.7

-0.69 1.8

(.5 * .5) + (-.7 * -.69) (.5 * -.7) + (-.7 * 1.8)

(-.69 * .5) + (1.8 * -.69) (-.69 * -.7) + (1.8 * 1.8)
* =
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Must

match

Referred to sometimes as matrix-matrix product or matrix-vector 

product (or multiply)





Hadamard Product

• Multiply each A(i, j) to each corresponding B(i, j)

• Element-wise multiplication

0.5 -0.7

-0.69 1.8

0.5 -0.7

-0.69 1.8

.5 * .5 = .25 -.7 * .7 = .49

-.69 * -.69 = .4761 1.8 * 1.8 = 3.24
=



Elementwise Functions
• Applied to each element (i, j) of matrix/vector argument 

• Could be cos(.), sin(.), tanh(.), etc.  (the “.” means argument)

• Identity:

• Logistic Sigmoid:

• Softmax:

• Linear Rectifier:

1.0 -1.4

-0.69 1.8

𝜑(1.0) = 1 𝜑(-1.4) = 0

𝜑(-0.68) = 0 𝜑(1.8) = 1.8
=𝝋( )



Why Do We Care? 

Computation Graphs
Linear algebra 

operators 

arranged in a 

directed graph!
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A Simple Linear Predictor
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A Simple Linear Predictor
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𝑯 = 𝝋(𝒁)

A Simple Linear Predictor



Vector Form (One Unit)

𝐱𝟎

𝒙𝟏

𝒙𝟐

𝐰𝟎 𝐰𝟏 𝐰𝟐𝒉𝟎: * = 𝛗(𝐰𝟎  ∗  𝐱𝟎 + 𝐰𝟏  ∗  𝐱𝟏 + 𝐰𝟐  ∗  𝐱𝟐)

This calculates activation value of single (output) 

unit that is connected to 3 (input) sensors.



Vector Form (Two Units)

𝐱𝟎

𝒙𝟏

𝒙𝟐

𝐰𝟎 𝐰𝟏 𝐰𝟐

𝐰𝟑 𝐰𝟒 𝐰𝟓

𝒉𝟎: * = 𝛗(𝐰𝟎  ∗  𝐱𝟎 + 𝐰𝟏  ∗  𝐱𝟏 + 𝐰𝟐  ∗  𝐱𝟐)

𝛗(𝐰𝟑  ∗  𝐱𝟎 + 𝐰𝟒  ∗  𝐱𝟏 + 𝐰𝟓  ∗  𝐱𝟐)

This vectorization easily generalizes to multiple (3) 

sensors feeding into multiple (2) units.

𝒉𝟏:

Known as vectorization!



Now Let Us Fully 

Vectorize This!

𝐱𝟎 𝐱𝟑

𝒙𝟏 𝒙𝟒

𝒙𝟐 𝒙𝟓

𝐰𝟎 𝐰𝟏 𝐰𝟐

𝐰𝟑 𝐰𝟒 𝐰𝟓

𝒉𝟎: * = 𝛗(𝐰𝟎  ∗  𝐱𝟎 + …) 𝛗(𝐰𝟎  ∗  𝐱𝟑 + …)

𝛗(𝐰𝟑  ∗  𝐱𝟎 + …) 𝛗(𝐰𝟑  ∗  𝐱𝟑 + …)

This vectorization is also important for 

formulating mini-batches.

(Good for GPU-based processing.)

𝒉𝟏:



Tensors in Machine Learning









The Frobenius Norm



Norms Can Serve as Building Blocks 

for Distance Measurements!





QUESTIONS?

Deep questions?!

Deep robots!

36











Numerically unstable, but useful for abstract analysis





Invertibility

• Matrix can’t be inverted if…

• More rows than columns

• More columns than rows

• Redundant rows/columns (“linearly dependent”, 

“low rank”)



Matrix Rank

• Matrix rank is defined as (a) maximum number of linearly 

independent column vectors in matrix or (b) maximum 

number of linearly independent row vectors in matrix 

(equivalent definitions)

• Linear independence/dependence
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