

Machine Learning: Elements of Linear Algebra

Alexander G. Ororbia II Introduction to Machine Learning CSCI-635 8/30/2023

Special thanks to: Sargur N. Srihari

This is a Crash Course Review...

- Not a comprehensive survey of all of linear algebra
- Focused on subset most relevant to machine learning
- For a larger subset/treatment:
 Linear Algebra by Georgi E. Shilov
 - Also read: "Linear Algebra for Dummies"

What is Linear Algebra?

 Linear algebra is the branch of mathematics concerning linear equations such as

$$a_1x_1 + \ldots + a_nx_n = b$$

- In vector notation we say $\mathbf{a}^{\mathrm{T}}\mathbf{x} = b$
- Called a linear transformation of \boldsymbol{x}
- Linear algebra is fundamental to geometry, for defining objects such as lines, planes, rotations

Linear equation $a_1x_1+\ldots+a_nx_n=b$ defines a plane in (x_1,\ldots,x_n) space Straight lines define common solutions to equations

> Linear algebra is used throughout engineering (based on continuous math)

 \subseteq = proper subset (not the whole thing) \subseteq = subset

 $\exists = \text{there exists}$

 $\forall = \text{for every}$

 \in = element of

 \bigcup = union (or)

Mathematical Notation in CSCI 635

 \bigcap = intersection (and)

s.t.= such that

w.r.t. = with respect to

 \implies implies

 \iff if and only if

 $\sum =$ sum $\prod =$ multiplication

 $\setminus =$ set minus

 \therefore = therefore

Scalars

- A scalar is a single number
- Integers, real numbers, rational numbers, etc.
- Denoted with italic font:

a, n, x

On number spaces/domains:

- \mathbb{RR} All real (continuous) numbers
- $\mathbb{Z}\mathcal{Z}$ All integers
 - All natural (counting) numbers

Vectors

- An array of numbers arranged in order
- Each no. identified by an index
- Written in lower-case bold such as $oldsymbol{x}$
 - its elements are in italics lower case, subscripted

$$m{x} = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix}$$
· $m{\mathcal{R}}^n = m{\mathcal{R}}^{n imes 1}$ "All real numbers"

- If each element is in R then \boldsymbol{x} is in R^n
- We can think of vectors as points in space
 - Each element gives coordinate along an axis

Matrices

• 2-D array of numbers

So each element identified by two indices

- Denoted by bold typeface \boldsymbol{A}

- Elements indicated by name in italic but not bold

- $\bullet \ A_{1,1}$ is the top left entry and $A_{m,n}$ is the bottom right entry
- We can identify nos in vertical column *j* by writing : for the horizontal coordinate

Column

The "slice" operator

• $A_{i:}$ is i^{th} row of $A, A_{:j}$ is j^{th} column of A

• If A has shape of height m and width n with real-values then $A \in \mathbb{R}^{m \times n}$

Tensor

Sometimes need an array with more than two axes

– E.g., an RGB color image has three axes

- A tensor is an array of numbers arranged on a regular grid with variable number of axes
- Denote a tensor with this bold typeface: A
- Element (i,j,k) of tensor denoted by $A_{i,j,k}$

Types of notation accepted (just be consistent & mean what you write):

$$\mathcal{R}^{1 imes 1 imes 1} = \mathcal{R}^{1 imes 1} = \mathcal{R}^1 = \mathcal{R}$$

Shapes of Tensors

Transpose of a Matrix

- An important operation on matrices
- The transpose of a matrix $oldsymbol{A}$ is denoted as $oldsymbol{A}^{\mathrm{T}}$
- Defined as

$$(\mathbf{A}^{\mathrm{T}})_{i,j} = A_{j,i}$$

– The mirror image across a diagonal line

 Called the main diagonal, running down to the right starting from upper left corner

$$A = \begin{bmatrix} A_{1,1} & A_{1,2} & A_{1,3} \\ A_{2,1} & A_{2,2} & A_{2,3} \\ A_{3,1} & A_{3,2} & A_{3,3} \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} A_{1,1} & A_{2,1} & A_{3,1} \\ A_{1,2} & A_{2,2} & A_{3,2} \\ A_{1,3} & A_{2,3} & A_{3,3} \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} A_{1,1} & A_{2,1} & A_{3,1} \\ A_{1,2} & A_{2,2} & A_{3,2} \\ A_{3,1} & A_{3,2} \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} A_{1,1} & A_{2,1} & A_{3,1} \\ A_{1,2} & A_{2,2} & A_{3,2} \\ A_{3,1} & A_{3,2} \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} A_{1,1} & A_{2,1} & A_{3,1} \\ A_{1,2} & A_{2,2} & A_{3,2} \\ A_{3,1} & A_{3,2} \end{bmatrix}$$
$$(AB)^{\top} = B^{\top}A^{\top} \leftarrow \text{Useful property of transpose}$$

Vector as Special Case of Matrix

- Vectors are matrices with a single column
- Often written in-line using transpose

$$\boldsymbol{x} = [x_1, \dots, x_n]^{\mathrm{T}}$$

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \\ \\ \\ x_n \end{bmatrix} \implies \boldsymbol{x}^T = \begin{bmatrix} x_1, x_2, \dots x_n \end{bmatrix}$$

Matrix Addition/Subtraction

- Assume column-major matrices (for efficiency)
- Add/subtract operators follow basic properties of normal add/subtract
 - Matrix A + Matrix B is computed element-wise

$$0.5$$
 -0.7 -0.69 1.8 -0.69 1.8 -0.69 1.8 -0.69 1.8

Matrix Addition

- We can add matrices to each other if they have the same shape, by adding corresponding elements
 - If A and B have same shape (height m, width n)

$$C = A + B \Longrightarrow C_{i,j} = A_{i,j} + B_{i,j}$$

- A scalar can be added to a matrix or multiplied by a scalar $D = aB + c \Rightarrow D_{i,j} = aB_{i,j} + c$
- Less conventional notation used in ML:
 - Vector added to matrix $C = A + b \Rightarrow C_{i,j} = A_{i,j} + b_j$
 - Called broadcasting since vector \boldsymbol{b} added to each row of A

Multiplying Matrices

- For product C=AB to be defined, A has to have the same no. of columns as the no. of rows of B
 - If A is of shape mxn and B is of shape nxp then matrix product C is of shape mxp

$$C = AB \Longrightarrow C_{i,j} = \sum_{k} A_{i,k} B_{k,j}$$

- Dot product between two vectors x and y of same dimensionality is the matrix product $x^{\mathrm{T}}y$
- We can think of matrix product C=AB as computing C_{ij} the dot product of row i of A and column j of B

Matrix-Matrix Multiply

- Matrix-Matrix multiply (outer product)
 - Vector-Vector multiply (dot product)
- The usual workhorse of machine learning
- Vectorizes sums of products (builds on dot product)

0.5	-0.7	*	0.5	-0.7		(.5 * .5) + (7 *69)	(.5 *7) + (7 * 1.8)
-0.69	1.8		-0.69	1.8	-	(69 * .5) + (1.8 *69)	(69 *7) + (1.8 * 1.8)

Referred to sometimes as matrix-matrix product or matrix-vector product (or multiply)

Matrix Product Properties

- Distributivity over addition: A(B+C)=AB+AC
- Associativity: A(BC) = (AB)C
- Not commutative: AB=BA is not always true
- Dot product between vectors is commutative: $x^{\mathrm{T}}y = y^{\mathrm{T}}x$
- Transpose of a matrix product has a simple form: $(AB)^{T} = B^{T}A^{T}$

Hadamard Product

- Multiply each A(i, j) to each corresponding B(i, j)
 - Element-wise multiplication

Elementwise Functions

- Applied to each element (i, j) of matrix/vector argument
 - Could be cos(.), sin(.), tanh(.), etc. (the "." means argument)
- Identity: $\phi(\mathbf{v}) = \mathbf{v}$
- Logistic Sigmoid: $\phi(\mathbf{v}) = \sigma(\mathbf{v}) = rac{1}{1+e^{-\mathbf{v}}}$
- Softmax: $\phi(\mathbf{v}) = rac{\exp(\mathbf{v})}{\sum_{c=1}^{C} \exp(\mathbf{v}_c)}$
- Linear Rectifier: $\phi(\mathbf{v}) = \max(0, \mathbf{v})$

$$\varphi\left(\begin{array}{c|c}1.0 & -1.4\\\hline -0.69 & 1.8\end{array}\right) = \left(\begin{array}{c|c}\varphi(1.0) = 1 & \varphi(-1.4) = 0\\\hline \varphi(-0.68) = 0 & \varphi(1.8) = 1.8\end{array}\right)$$

 $\mathbf{v} \in \mathbb{R}^{n}$

Why Do We Care? Computation Graphs

Vector Form (One Unit)

This calculates activation value of single (output) unit that is connected to 3 (input) sensors.

$$h_{0}: w_{0} w_{1} w_{2} * x_{0} = \phi(w_{0} * x_{0} + w_{1} * x_{1} + w_{2} * x_{2})$$

$$x_{1}$$

$$x_{2}$$

Vector Form (Two Units)

This vectorization easily generalizes to multiple (3) sensors feeding into multiple (2) units.

Known as vectorization!

Now Let Us Fully Vectorize This!

This vectorization is also important for formulating **mini-batches**. (Good for GPU-based processing.)

Tensors in Machine Learning

Vector x is converted into vector y by multiplying x by a matrix W

A linear classifier with bias eliminated y = Wx

Identity and Inverse Matrices

- Matrix inversion is a powerful tool to analytically solve Ax=b
- Needs concept of Identity matrix
- Identity matrix does not change value of vector when we multiply the vector by identity matrix
 - Denote identity matrix that preserves n-dimensional vectors as I_n
 - Formally $I_n \in \mathbb{R}^{n \times n}$ and $\forall \mathbf{x} \in \mathbb{R}^n, I_n \mathbf{x} = \mathbf{x}$ - Example of I_3 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Norms

- Used for measuring the size of a vector
- Norms map vectors to non-negative values
- Norm of vector $\boldsymbol{x} = [x_1, ..., x_n]^T$ is distance from origin to \boldsymbol{x}
 - It is any function f that satisfies:

$$\begin{aligned} f(\boldsymbol{x}) &= 0 \Longrightarrow \boldsymbol{x} = 0 \\ f(\boldsymbol{x} + \boldsymbol{y}) &\leq f(\boldsymbol{x}) + f(\boldsymbol{y}) & \text{Triangle Inequality} \\ \forall \alpha \in R \quad f(\alpha \boldsymbol{x}) = |\alpha| f(\boldsymbol{x}) \end{aligned}$$

L^P Norm

 $-L^2$ Norm

Definition:

- Called Euclidean norm
 - Simply the Euclidean distance
 - between the origin and the point \boldsymbol{x}
 - written simply as ||x||
 - Squared Euclidean norm is same as $x^{\mathrm{T}}x$
- $-L^1$ Norm
 - Useful when 0 and non-zero have to be distinguished
 - Note that L^2 increases slowly near origin, e.g., $0.1^2=0.01$)

$$-L^{\infty}$$
 Norm $\|\boldsymbol{x}\|_{\infty} = \max_{i} |x_{i}|$

Called max norm

The Frobenius Norm Similar to L^2 norm $\left\|A\right\|_{F} = \left(\sum_{i,j} A_{i,j}^{2}\right)^{\frac{1}{2}}$

Norms Can Serve as Building Blocks for Distance Measurements!

• Distance between two vectors
$$(v, w)$$

 $- \operatorname{dist}(v, w) = ||v - w||$
 $= \sqrt{(v_1 - w_1)^2 + .. + (v_n - w_n)^2}$

Special kind of Matrix: Symmetric

- A symmetric matrix equals its transpose: $A = A^T$
 - E.g., a distance matrix is symmetric with $A_{ij}=A_{ji}$

- E.g., covariance matrices are symmetric

	1	.5	.15	.15	0	0	
	.5 .15 .15 0	1 .15 .15 0	.15 1 .25 0	.15 .25 1 0	0 0 0	0 0 .10	-
× -							
2=							
	0	0	0	0	.10	1	

QUESTIONS?

Deep robots!

Deep questions?!

Linear Transformation

• Ax=b

- where $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$

More explicitly

$$A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n = b_1$$
$$A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n = b_2$$
$$A_{n1}x_1 + A_{m2}x_2 + \dots + A_{n,n}x_n = b_n$$

n equations in *n* unknowns

Can view A as a *linear transformation* of vector \boldsymbol{x} to vector \boldsymbol{b}

• Sometimes we wish to solve for the unknowns $x = \{x_1, ..., x_n\}$ when A and b provide constraints

Use of a Vector in Regression

A design matrix
 – N samples, D features

- Feature vector has three dimensions
- This is a regression problem

Use of norm in Regression

• Linear Regression x: a vector, w: weight vector $y(x,w) = w_0 + w_1 x_1 + ... + w_d x_d = w^T x$ With nonlinear basis functions ϕ_j $y(x,w) = w_0 + \sum_{i=1}^{M-1} w_j \phi_j(x)$

Loss Function

$$\tilde{E}(\boldsymbol{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(\boldsymbol{x}_{n}, \boldsymbol{w}) - t_{n} \right\}^{2} + \frac{\lambda}{2} \left| |\boldsymbol{w}^{2}| \right|$$

Second term is a weighted norm called a regularizer (to prevent overfitting)

Matrix Inverse

- Inverse of square matrix A defined as $A^{-1}A = I_n$
- We can now solve Ax=b as follows:

$$Ax = b$$
$$A^{-1}Ax = A^{-1}b$$
$$I_n x = A^{-1}b$$
$$x = A^{-1}b$$

- This depends on being able to find A^{-1}
- If A⁻¹ exists there are several methods for finding it

Numerically unstable, but useful for abstract analysis

Closed-form solutions

- Two closed-form solutions
 1.Matrix inversion x=A⁻¹b
 2.Gaussian elimination
 - If A⁻¹ exists, the same A⁻¹ can be used for any given b
 - But A⁻¹ cannot be represented with sufficient precision
 - It is not used in practice
 - Gaussian elimination also has disadvantages
 - numerical instability (division by small no.)
 - $-O(n^3)$ for $n \ge n$ matrix

Invertibility

- Matrix can't be inverted if...
 - More rows than columns
 - More columns than rows
 - Redundant rows/columns ("linearly dependent", "low rank")

Matrix Rank

- Matrix rank is defined as (a) maximum number of linearly independent column vectors in matrix or (b) maximum number of linearly independent row vectors in matrix (equivalent definitions)
- Linear independence/dependence

$$a = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$
 $d = \begin{bmatrix} 2 & 4 & 6 \end{bmatrix}$
 $b = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$
 $e = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$
 $c = \begin{bmatrix} 5 & 7 & 9 \end{bmatrix}$
 $f = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$