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Flower Pollination (1)

* Over quarter million flowering plant species (80% plant species are flowering
species), evolved for at least 125 million years

* Flower’s main purpose = reproduction through pollination
* Transfer of pollen, via pollinators such as insects, birds, bats, & others

* Flower-pollinator relationship (some flowers can only attract/depend specific species of
bird/insect)



Flower Pollination (2)

* Pollination: abiotic & biotic
* Biotic = requires pollinators

* Flower constancy (honeybees) — tend to visit certain flower species only, maximizes transfer of pollen
in same/conspecific plants

* Guarantees nectar supply for pollinators (given limited memory/learning)
* Abiotic = does not require pollinators (wind/diffusion), e.g., grass
 Self-pollination: pollination comes from same plant or its flowers, e.g., peach flower
* Cross-pollination: pollination can come from pollen of different plant



The Flower Pollination Algorithm (FPA)

* Inspired by pollination process of flowering plants
 Particularly useful for multi-objective optimization

* Four rules/concepts:

1. Biotic & cross-pollination considered processes of global pollination, pollinators move
according to Lévy flight/distribution (Rule 1)

2. Local pollination — abiotic & self-pollination used (Rule 2)

3. Flower constancy = reproduction probability proportional to similarity of 2 flowers
involved (Rule 3)

4. Interaction/switch between global & local pollination governed by switch probability
p € [0,1], with slight bias towards local pollination (Rule 4)



The Léevy Distribution
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https://en.wikipedia.org/wiki/L%C3%A9vy distribution



FPA Mechanics

def sample_levy(u, ¢ =

return mu + ¢ / (norm.ppf(

- u)**

)
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Flower Pollination Algorithm (or simply Flower Algorithm)

Objective min or max f(x), * = (z1,x2,...,Tq)
Initialize a population of n flowers/pollen gametes with random solutions
Find the best solution g, in the initial population
Define a switch probability p € [0, 1]
while (t <MaxGeneration)
for i =1 :n (all n flowers in the population)
if rand < p,
Draw a (d-dimensional) step vector L from a Lévy distribution
Global pollination via LI?E—'_l —x, +vL(g, — =)
else
Draw € from a uniform distribution in [0,1]
Do local pollination via z!™" = x! + e(z! — x},)
end if
Evaluate new solutions
If new solutions are better, update them in the population
end for
Find the current best solution g,
end while
Output the best solution found
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FPA Works Pretty Well But...

* Very efficient (near exponential convergence rate in comparison to other
algo’s)

* Only two hyper-parameters p and y

* Yet difficulty of nonlinear flight distribution makes analysis difficult (main update
can be analyzed via dynamical systems or Markov chains)

 Work needed to combine FPA w/ other methods to better handle constraints



Questions?
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The Real World Contains Multiple Objectives

* Want to improve performance of product while minimizing cost at
same time

* Problem: multiple objectives may be conflicting -- trade-offs are
required to reach a “balance”

* This means multiple algorithmic runs are needed to generate a set of
solutions

* Requires good approximations of Pareto fronts for problem of interest



Multi-Objective Optimization

* Pareto Optimality = state in which system is n : .
optimized such that one objective cannot be \  _approximated Paretofrong
improved without another one worsening ' i .
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Multi-Objective Optimization Formulation

* Problem: optimize m objective functions, or:
Minimize fi(x), [2(x),..., [im(x)

* Subject to nonlinear equality & inequality constraints:
hi)=0, (j=12,....J)
gr(x) <0, (k=1,2,....K)

e Can combine set of objectives into a single composite function f:
m

= Z w; fi
i=1

e With:

1

b

wi =1, w; >0 w; (1t = 1,...,m) are nonegative weights

*

=1



Multi-Objective (MO): Preferential Weighting



Applications of the Multi-Objective Flower -
Pollination Algorithm (MO-FPA) ot
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Figure 11.4 Convergence comparison for the disc brake design.



Methodology of MO Optimization

* Direct methods (very difficult to use/implement)

* Aggregation methods
* Weighted Sum Method (what we sketched today)
* The Utility Method

* Rewrite set of objectives in terms of one with others as constraints w/
imposed limits

e The e-Constraint Method

* Pareto-set approximation methods
* NSGA-II (elitist nondominated sorting genetic algorithm)



Questions?
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Step 1. Initialization: pollen population x = (x,, x,, .., X,) is generated
randomly. A switch probability p € arrange from 0 to 1. A stopping
criterion is set.
Step 2. The best solution g* is calculated with initial population, F, . is
assigned to fitness at g*.
Step 3. For each pollen in the population
if rand < p,

A step vector L is computed as Lévy distribution Eq.(2)

Global pollination is updated via Eq.(1)
else

Draw u from a uniform distribution in [0,1]

Local pollination is processed via Eqg.(3)
end if
Step 4. Evaluate new solutions, the function value F,_, is assigned to
fitness(x (t+1). A new solution is accepted if the solution improves (F, .,
less than F . ), by updating the best solution g* to x(t+1) and assign the
minimum function F,_, to F, .

Step 5. If the termination condition is not safety, go to Step 3.
Step 6. Output the best solution found.
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