

On the Power of Echo-Location: Bat Algorithms

Alexander G. Ororbia II Biologically-Inspired Intelligent Systems CSCI-633 3/28/2022

Behavior of Microbats

- 1000 different species, size range from tiny bumblebee bats to giant bats (wingspans of 2m, weight 1kg)
- Use echolocation (especially "microbats"; "megabats" not much)
 - Type of sonar to detect prey, avoid objects, locate roosting crevices in dark
 - Emit loud sound pulse and listen for echoes (that bounce from objects)
 - Frequency of signals vary across species/hunting strategy
- Microbats use time delay from emission & detection of echo, time difference between 2 ears, and loudness variation (of echo)
 - Build 3D "model" of surroundings/world
 - Can detect distance/orientation of target, type of prey, even moving speed

Echolocation Acoustics

- Pulses last only 8-10 ms but have constant frequency (25 kHz-150 kHz)
- Bats might emit 10-20 ultrasonic bursts every second
- Pulse emission can speed up to 200 pulses per sec when near prey
- $\lambda = \frac{v}{f}$, where v = 340 m/s (sound speed) @ room temperature
 - λ is wavelength (2 mm 14 mm), *f* is constant frequency
- Loudness varies from loudest (hunting prey) to quieter base (honing in on prey), traveling range is few meters
 - Not all bats are blind -- combine smell and sight w/ echolocation

General Principles / Idealization

- 1. All bats use echolocation (sense distance), "know" difference between food & prey, barriers
- 2. Bats fly randomly, velocity v_i and position x_i , each can adjust frequency/wavelength of emitted pulses
 - Pulse emission rate $r \in [0,1]$ (based on closeness to target)
- 3. Loudness varies from large, positive A_0 to minimum value A_{min}
- No ray tracing used to estimate time delay & 3D topography

Some Approximations/Simplifications

- Frequency range $f \in [f_{min}, f_{max}]$ corresponds to wavelength range $\lambda \in [\lambda_{min}, \lambda_{max}]$ (so range [20 kHz,500 kHz] \rightarrow [0.7 mm, 17 mm])
 - Detectable range (largest wavelength) should be comparable to size of target domain (or could vary frequency & fix wavelength)
 - Assume $f \in [0, f_{max}]$, pulse range in [0,1]
 - 0 = no pulses,
 - 1 maximum pulse rate emission

Some actual bats...

Bat Algorithm Dynamics

Bat Algorithm

Initialize the bat population x_i and v_i (i = 1, 2, ..., n)

Initialize frequencies f_i , pulse rates r_i and the loudness A_i

while (t < Max number of iterations)

Generate new solutions by adjusting frequency,

Update velocities and locations/solutions [(10.1) to (10.3)]

if $(rand > r_i)$

Select a solution among the best solutions

Generate a local solution around the selected best solution end if

Generate a new solution by flying randomly

if (rand $< A_i \& f(x_i) < f(x_*)$)

Accept the new solutions

Increase r_i and reduce A_i

end if

Rank the bats and find the current best x_* end while

Toy Problem

There are many standard test functions for validating new algorithms. As a simple benchmark, let us look at the eggcrate function

$$f = x^2 + y^2 + 25(\sin^2 x + \sin^2 y), \quad (x, y) \in [-2\pi, 2\pi] \times [-2\pi, 2\pi].$$

We know that f has a global minimum $f_{\min} = 0$ at (0,0). In our implementation, we use n = 25 to 50 virtual bats, and $\alpha = 0.9$. For the multimodal eggcrate function, a snapshot of the last 10 iterations is shown in Figure 10.2, where all bats move toward the global best (0,0).

Figure 10.2 The eggcrate function (left) and the locations of 40 bats in the last 10 iterations (right).

The Binary Bat Algorithm (BBA)

- Model search space as *d*-dimensional Boolean lattice
 - Bats move across corners & nodes of hypercube
 - Feature represented by bat's position as binary vector
- Restrict bat's position using sigmoid function:

$$x_i^j = \begin{cases} 1 & \text{if } S(v_i^j) > \rho, \text{and,} \\ 0 & \text{otherwise} \end{cases} \quad S(v_i^j) = \frac{1}{1 + \exp[-v_i^j]}$$

- Note: $\rho \sim U(0,1)$ and v_i^j (*j*th dimension of bat *i*)
- Could use other methods of discretization (such as those in PSO, FA)

Why is BA Efficient?

- Frequency tuning
 - BA uses echolocation and frequency tuning to solve problems
 - BA possesses advantages of other metaheuristic algorithms, i.e., PSO, SA
- Automatic zooming
 - BA has a distinct advantage over other metaheuristic algorithm
 - BA can "zoom in" to regions where promising solutions have been found
 - Zooming accompanied by automatic switch from explorative moves to local intensive exploitation
 - Gives BA quick convergence rate (at least in early iterations) compared to others
- Parameter control
 - BA uses (meta-)parameter control varies values of A and r as iterations proceed
 - Automatic switch from exploration to exploitation when optimal solution is approaching

Some Applications of BA

- Continuous Optimization
- Combinatorial Optimization and Scheduling
- Inverse Problems & Parameter Estimation
- Classifications, Clustering, & Data Mining
- Image Processing
- Fuzzy Logic

Questions?

