

More Particles

Alexander G. Ororbia II Biologically-Inspired Intelligent Systems CSCI-633 3/5/2024

Particle Swarm Optimization

Objective function $f(\boldsymbol{x})$, $\boldsymbol{x} = (x_1, ..., x_d)^T$ Initialize locations \boldsymbol{x}_i and velocity \boldsymbol{v}_i of n particles. Find \boldsymbol{g}^* from min $\{f(\boldsymbol{x}_1), ..., f(\boldsymbol{x}_n)\}$ (at t = 0) while (criterion)

for loop over all *n* particles and all *d* dimensions Generate new velocity v_i^{t+1} using equation (7.1) Calculate new locations $x_i^{t+1} = x_i^t + v_i^{t+1}$ Evaluate objective functions at new locations x_i^{t+1} Find the current best for each particle x_i^*

end for

Find the current global best g^\ast

Update t = t + 1 (pseudo time or iteration counter)

end while

Output the final results x_i^* and g^*

Accelerated PSO (APSO)

APSO Setup

- Can exhibit global convergence
- $\alpha \approx [0.1,0.4] \& \beta \approx [0.1,0.7]$, with $\alpha = 0.2$ and $\beta = 0.5$ as initial values (unimodal objectives)
 - α and β should be in scale of variables x_i (& search domain)
- Randomness schedule (i.e., monotonically decreasing fnt.)

•
$$\alpha = \alpha_0 e^{-\gamma t}$$
, or, $\alpha = \alpha_0 \gamma^t$ where $0 < \gamma < 1$

where $\alpha_0 \approx [0.5,1]$ (initial value), *t* marks iteration count, and $\gamma = [0.9,0.97]$ (control variable)

• Tune schedule $\alpha(t)$ to optimization problem of interest

