Optimization through Fireflies

Alexander G. Ororbia II
Biologically-Inspired Intelligent Systems
CSCI-633
3/5/2024, 3/7/2024

The Firefly Algorithm (FA)

- Based on flashing behavior of tropical fireflies (>2K species)
- Rhythm of flash, rate of flashing, \& amount of time between flashes create signal system for sex
- Females respond to male's unique pattern of flashing (in same species)
- Some fireflies can synchronize flashes \rightarrow emergent biological self-organized behavior
- Light intensity at distance r (from light source) follows inverse-square law
- Intensity I decreases as distance r increases, $I \propto \frac{1}{r^{2}}$
- Air absorbs light (makes it weaker w/ increasing distance)
- Above 2 factors make fireflies visible at bounded distance (~ 100 meters) and flashing light can be tied to an objective function to be optimized

Side Note

- Some outsider (Photuris) females could "eavesdrop" and trick a male to coming to hear so she can eat him
- A real firefly version of "Maneater" or "Fireflyeater"
- Could this be the basis of another metaheuristc?

Firefly Simplified Principles

- All fireflies are unisex - one will be attracted to other regardless of sex
- Attractiveness is proportional to fly's brightness
- For any 2 flashers, less brighter one will move to brighter one (attractiveness decreases w/ distance)
- If no one is brighter, then move is random
- Brightness is determined by objective fun landscape
- Maximization = brightness proportional to value of cost function
- Brightness function similar to fitness function

Light Intensity \& Attractiveness

- Brightness at location \boldsymbol{x} can be $I(\boldsymbol{x}) \propto f(\boldsymbol{x})$
- Attractiveness β between agent i and j is relative to "eyes of beholder"
- Intensity varies $I(r)=\frac{I_{s}}{r^{2}}$, where I_{s} is intensity at source
- For medium w/ fixed light absorption γ, light intensity varies $\mathbf{w} /$ distance r
- Approximate inverse-square law \& absorption via $I=I_{0} e^{-\gamma r^{\wedge} 2}$, where I_{0} is original light intensity at $r=0$ (Gaussian form)
- Attractiveness proportional to light intensity as seen by adjacent fireflies, thus $\beta=\beta_{0} e^{-\gamma r^{2}} \mathrm{w} / \beta_{0}$ is attractiveness at $r=0$
- Fast approximation: $\beta=\frac{\beta_{0}}{1+\gamma r^{2}}$

FA Movement/Mechanics

```
Begin
    1) Objective function: }f(\mathbf{x}),\quad\mathbf{x}=(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{d}{})\mathrm{ ;
    2) Generate an initial population of fireflies }\mp@subsup{\mathbf{x}}{i}{}\quad(i=1,2,\ldots,n);
    3) Formulate light intensity }I\mathrm{ so that it is associated with }f(\mathbf{x}
        (for example, for maximization problems, I\proptof(\mathbf{x})\mathrm{ or simply }I=f(\mathbf{x});\mathrm{ )}
    4) Define absorption coefficient }
    while (t < MaxGeneration)
        for i = 1 : n (all n fireflies)
            for j = 1 : i (n fireflies)
            if (I
            Vary attractiveness with distance r via }\operatorname{exp}(-\gammar)\mathrm{ ;
            move firefly i towards j;
            Evaluate new solutions and update light intensity;
            end if
            end for j
        end for i
        Rank fireflies and find the current best;
    end while
end
```


Questions?

