

Optimization through Fireflies

Alexander G. Ororbia II Biologically-Inspired Intelligent Systems CSCI-633 3/5/2024, 3/7/2024

The Firefly Algorithm (FA)

- Based on flashing behavior of tropical fireflies (>2K species)
 - Rhythm of flash, rate of flashing, & amount of time between flashes create signal system for sex
 - Females respond to male's unique pattern of flashing (in same species)
 - Some fireflies can synchronize flashes → emergent biological self-organized behavior
- Light intensity at distance r (from light source) follows inverse-square law
 - Intensity I decreases as distance r increases, $I \propto \frac{1}{r^2}$
 - Air absorbs light (makes it weaker w/ increasing distance)
 - Above 2 factors make fireflies visible at bounded distance (~100 meters) and flashing light can be tied to an objective function to be optimized

Side Note

- Some outsider (Photuris) females could "eavesdrop" and trick a male to coming to hear so she can *eat* him
 - A real firefly version of "Maneater" or "Fireflyeater"
 - Could this be the basis of another metaheuristc?

Firefly Simplified Principles

- All fireflies are unisex one will be attracted to other regardless of sex
- Attractiveness is proportional to fly's brightness
 - For any 2 flashers, less brighter one will move to brighter one (attractiveness decreases w/ distance)
 - If no one is brighter, then move is random
- Brightness is determined by objective fun landscape
 - Maximization = brightness proportional to value of cost function
 - Brightness function similar to fitness function

Light Intensity & Attractiveness

- Brightness at location \mathbf{x} can be $I(\mathbf{x}) \propto f(\mathbf{x})$
- Attractiveness β between agent *i* and *j* is relative to "eyes of beholder"
- Intensity varies $I(r) = \frac{I_s}{r^2}$, where I_s is intensity at source
 - For medium w/ fixed light absorption γ, light intensity varies w/ distance r
 - Approximate inverse-square law & absorption via $I = I_0 e^{-\gamma r^2}$, where I_0 is original light intensity at r = 0 (Gaussian form)
- Attractiveness proportional to light intensity as seen by adjacent fireflies, thus $\beta = \beta_0 e^{-\gamma r^2} w/\beta_0$ is attractiveness at r = 0

• Fast approximation:
$$\beta = \frac{\beta_0}{1 + \gamma r^2}$$

FA Movement/Mechanics

Begin

- 1) Objective function: $f(\mathbf{x}), \quad \mathbf{x} = (x_1, x_2, \dots, x_d);$
- 2) Generate an initial population of fireflies \mathbf{x}_i $(i=1,2,\ldots,n);$.
- 3) Formulate light intensity I so that it is associated with $f(\mathbf{x})$
 - (for example, for maximization problems, $I\propto f({f x})$ or simply $I=f({f x})$;)
- 4) Define absorption coefficient γ

```
while (t < MaxGeneration)</pre>
        for i = 1 : n (all n fireflies)
            for j = 1 : i (n fireflies)
                if (I_i > I_i),
                     Vary attractiveness with distance r via \exp(-\gamma r);
                     move firefly i towards j;
                     Evaluate new solutions and update light intensity;
                 end if
            end for j
        end for i
        Rank fireflies and find the current best;
    end while
end
```

