The Mechanics of Differential Evolution

Alexander G. Ororbia II
Biologically-Inspired Intelligent Systems
CSCI-633
2/20/2024

Metaheuristic: Differential Evolution (DE)

- Vector-based (population-based) algorithm; Storn \& Price (1996/1997)
- Viewed as self-organizing system
- Individuals 'evolve' by recombination w/ other individuals \& differentials between other individuals
- Devised for continuous search spaces, derivative-free
- No encoding/decoding required - real numbers are now solutions/chromosomes
- DE/rand/1/bin

DE General Mechanics

- Builds on the idea of genetic algorithms
- Three primary steps:
- Mutation, crossover, selection
- Name convention: $D E / x / y / z-x$ is mutation scheme, e.g., random (Rand) or best (Best), y is number of difference vectors, z is crossover scheme, e.g., binomial (Bin) or exponential (Exp) or either/agnostic (*)
- We will start with: DE/Rand/1/*

Differential Evolution (Naming Convention)

Many Variations:

\author{

- best/n/bin
 - random/n/bin
 - current/n/bin
 - best/n/exp
 - random/n/exp • current/n/exp
}

Parent Selection / Number of Pairs / Recombination

- In general:
- Perform binary or exponential recombination between current individual and another individual modified by a scaled difference between n pairs of other individuals

Schematic representation the application of a perturbation/mutation in DE, according to perturbation $\boldsymbol{\delta}=\alpha\left(\boldsymbol{x}_{q}^{t}-\boldsymbol{x}_{r}^{t}\right)$ (movement along function space).

Binomial Crossover

- Vector crossover visualization

Pseudocode

Differential Evolution

Initialize the population x with randomly generated solutions Set the weight $F \in[0,2]$ and crossover probability $C_{r} \in[0,1]$ while (stopping criterion)
for $i=1$ to n,
For each \boldsymbol{x}_{i}, randomly choose 3 distinct vectors $\boldsymbol{x}_{p}, \boldsymbol{x}_{r}$ and \boldsymbol{x}_{r}
Generate a new vector \boldsymbol{v} by DE scheme (6.2)
Generate a random index $J_{r} \in\{1,2, \ldots, d\}$ by permutation
Generate a randomly distributed number $r_{i} \in[0,1]$
for $j=1$ to d,
For each parameter $\boldsymbol{v}_{j, i}$ (j th component of \boldsymbol{v}_{i}), update

$$
\boldsymbol{u}_{j, i}^{t+1}= \begin{cases}\boldsymbol{v}_{j, i}^{t+1} & \text { if } r_{i} \leq C_{r} \text { or } j=J_{r} \\ \boldsymbol{x}_{j, i}^{t} & \text { if } r_{i}>C_{r} \text { and } j \neq J_{r},\end{cases}
$$

end
Select and update the solution by (6.5)
end
end
Post-process and output the best solution found
Figure 6.2 Pseudo code of differential evolution.

Pseudocode

Differential Evolution

Initialize the population x with randomly generated solutions
Set the weight $F \in[0,2]$ and crossover probability $C_{r} \in[0,1]$
while (stopping criterion)
for $i=1$ to n,
For each \boldsymbol{x}_{i}, randomly choose 3 distinct vectors $\boldsymbol{x}_{p}, \boldsymbol{x}_{r}$ and \boldsymbol{x}_{r}
Generate a new vector \boldsymbol{v} by DE scheme (6.2)
Generate a random index $J_{r} \in\{1,2, \ldots, d\}$ by permutation
Generate a randomly distributed number $r_{i} \in[0,1]$
for $j=1$ to d,
For each parameter $\boldsymbol{v}_{j, i}\left(j\right.$ th component of $\left.\boldsymbol{v}_{i}\right)$, update

$$
\boldsymbol{u}_{j, i}^{t+1}= \begin{cases}\boldsymbol{v}_{j, i}^{t+1} & \text { if } r_{i} \leq C, \begin{array}{l}
\text { or } j=J_{r} \\
\boldsymbol{x}_{j, i}^{t}
\end{array} \\
\text { if } r_{i}>C, & \text { and } j \neq J_{r},\end{cases}
$$

end
Select and update the solution by (6.5)
end
end
Post-process and output the best solution found
Improves search efficiency

Figure 6.2 Pseudo code of differential evolution. by ensuring at least one dimension of perturbed solution is different from
the original

Questions?

