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On Team Paper Talks/Presentations

e Starting next week — teams will be assigned a pool of
papers related to algorithm/model of the week and will
choose one paper (or can suggest a strongly relevant,
interesting paper, but must confirm with me and Xinyu)



Simulated Annealing Algorithm

Objective function f(x), = = (z1,...,2q4)"
Initialize the initial temperature Ty and initial guess x g
Set the final temperature 7y and the max number of iterations N
Define the cooling schedule T'+— aT, (0 < a < 1)
while (7' > Ty and t < N )
Drawn € from a Gaussian distribution
Move randomly to a new location: x;+1 = x; + € (random walk)
Calculate Af = fiy1(®es1) — filxe)
Accept the new solution if better
if not improved
(Generate a random number r
Accept if p = exp[-Af/T]| > r
end if
Update the best x, and f,
t=t+1
end while




) |®@ Simulated Annealing (this will be you,
| soon enough!)

Simulated Annealing

e Random Sta rting Point @ SHC + Restarts (this is you now,

as you work on HW 1)
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Simulated Annealing T = Very High

 Random Starting Point
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Simulated Annealing T = Very High

 Random Step
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Simulated Annealing T = Very High

* Even though E is lower, accept
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Simulated Annealing T = Very High

* Next Step; accept since higher E
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Simulated Annealing T = Very High

* Next Step; accept since higher E
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Simulated Annealing T = Very High

* Next Step; accept since higher E
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Simulated Annealing T = High

* Next Step; accept even though lower
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Simulated Annealing T = High

* Next Step; accept even though lower
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Simulated Annealing T = High

* Next Step; accept even though lower
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Simulated Annealing T = Medium

* Next Step; accept since higher
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Simulated Annealing T = Medium

* Next Step; lower, but reject (T is falling)

| think you’re stuck...
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Simulated Annealing T = Medium

* Next Step; Accept since E is higher
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Simulated Annealing T=Low

* Next Step; Accept since E change small

function
value




Simulated Annealing T=Low

* Next Step; Accept since E larger
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Simulated Annealing T=Low

* Next Step; Reject since E lower and T low
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Simulated Annealing T=Low

* Eventually converge to maximum

function
value




Genetic Algorithm (GA) Requirements

» Typical genetic algorithm requires two things to be defined:
* A genetic representation of solution domain
* A fitness function to evaluate solution domain

* A standard representation of the solution = array of bits
 Arrays of other types/structures can be used in essentially same way

* Main property that makes these genetic representations convenient is:
their parts are easily aligned due to their fixed size, that facilitates
simple crossover operation

 Variable length representations may also be used
* But crossover implementation is more complex in this case



Genetic Algorithms (GAs)
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Questions?
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