I‘-,_l._'I:||'3‘|-|'lr_.lli‘."a\‘h

Evolutionary Computation

Alexander G. Ororbia Il
Biologically-Inspired Intelligent Systems
CSCI-633
2/13/2024

On Team Paper Talks/Presentations

e Starting next week — teams will be assigned a pool of
papers related to algorithm/model of the week and will
choose one paper (or can suggest a strongly relevant,
interesting paper, but must confirm with me and Xinyu)

Simulated Annealing Algorithm

Objective function f(x), = = (z1,...,2q4)"
Initialize the initial temperature Ty and initial guess x g
Set the final temperature 7y and the max number of iterations N
Define the cooling schedule T'+— aT, (0 < a < 1)
while (7' > Ty and t < N)
Drawn € from a Gaussian distribution
Move randomly to a new location: x;+1 = x; + € (random walk)
Calculate Af = fiy1(®es1) — filxe)
Accept the new solution if better
if not improved
(Generate a random number r
Accept if p = exp[-Af/T]| > r
end if
Update the best x, and f,
t=t+1
end while

) |®@ Simulated Annealing (this will be you,
| soon enough!)

Simulated Annealing

e Random Sta rting Point @ SHC + Restarts (this is you now,

as you work on HW 1)

A

function
value

v

Simulated Annealing T = Very High

 Random Starting Point

function
value

Simulated Annealing T = Very High

 Random Step

function
value

Simulated Annealing T = Very High

* Even though E is lower, accept

function
value

Simulated Annealing T = Very High

* Next Step; accept since higher E

function
value

Simulated Annealing T = Very High

* Next Step; accept since higher E

function
value

Simulated Annealing T = Very High

* Next Step; accept since higher E

function
value

Simulated Annealing T = High

* Next Step; accept even though lower

function
value

Simulated Annealing T = High

* Next Step; accept even though lower

function
value

Simulated Annealing T = High

* Next Step; accept even though lower

function
value

Simulated Annealing T = Medium

* Next Step; accept since higher

function
value

Simulated Annealing T = Medium

* Next Step; lower, but reject (T is falling)

| think you’re stuck...

v

function
value

Simulated Annealing T = Medium

* Next Step; Accept since E is higher

function
value

Simulated Annealing T=Low

* Next Step; Accept since E change small

function
value

Simulated Annealing T=Low

* Next Step; Accept since E larger

function
value

Simulated Annealing T=Low

* Next Step; Reject since E lower and T low

function
value

Simulated Annealing T=Low

* Eventually converge to maximum

function
value

Genetic Algorithm (GA) Requirements

» Typical genetic algorithm requires two things to be defined:
* A genetic representation of solution domain
* A fitness function to evaluate solution domain

* A standard representation of the solution = array of bits
 Arrays of other types/structures can be used in essentially same way

* Main property that makes these genetic representations convenient is:
their parts are easily aligned due to their fixed size, that facilitates
simple crossover operation

 Variable length representations may also be used
* But crossover implementation is more complex in this case

Genetic Algorithms (GAs)

WHITE BIIMIIITI'E! l 4

Questions?

o~
B
* -

S R el
A7 E ASREAS

N

	Slide 1: Evolutionary Computation
	Slide 2: On Team Paper Talks/Presentations
	Slide 3
	Slide 4: Simulated Annealing
	Slide 5: Simulated Annealing
	Slide 6: Simulated Annealing
	Slide 7: Simulated Annealing
	Slide 8: Simulated Annealing
	Slide 9: Simulated Annealing
	Slide 10: Simulated Annealing
	Slide 11: Simulated Annealing
	Slide 12: Simulated Annealing
	Slide 13: Simulated Annealing
	Slide 14: Simulated Annealing
	Slide 15: Simulated Annealing
	Slide 16: Simulated Annealing
	Slide 17: Simulated Annealing
	Slide 18: Simulated Annealing
	Slide 19: Simulated Annealing
	Slide 20: Simulated Annealing
	Slide 22: Genetic Algorithm (GA) Requirements
	Slide 23: Genetic Algorithms (GAs)
	Slide 26: Questions?

