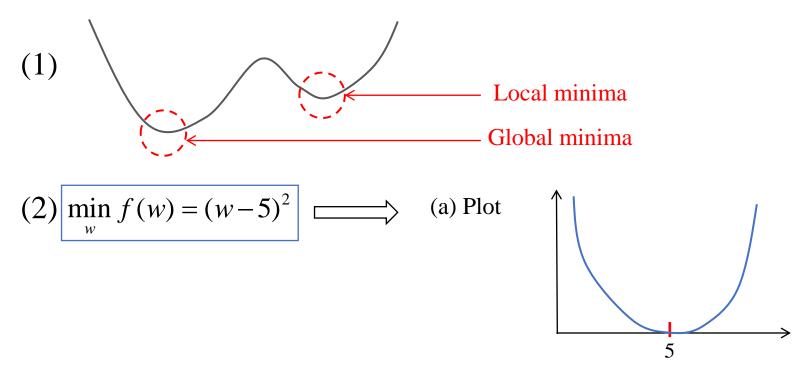


Gradients and Algorithmic Perspectives

Alexander G. Ororbia II Biologically-Inspired Intelligent Systems CSCI-633 1/25/2024

Optimization through Derivatives

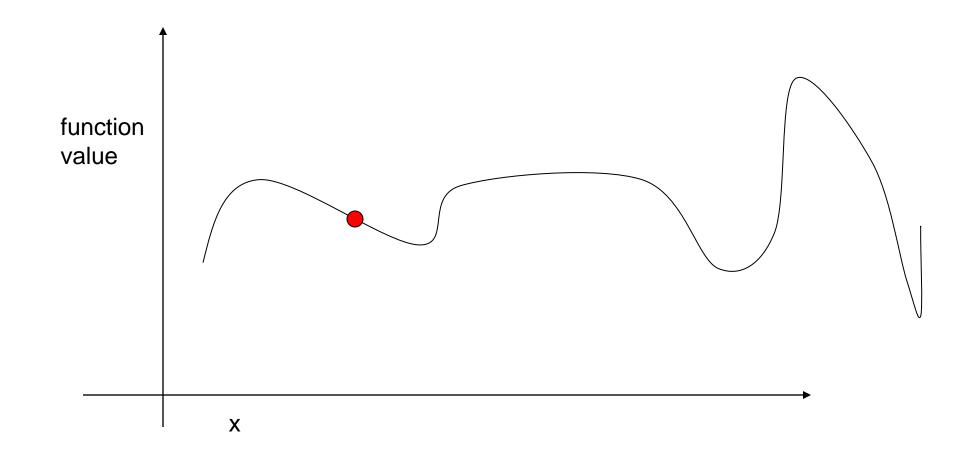
• How would we solve the following problems?



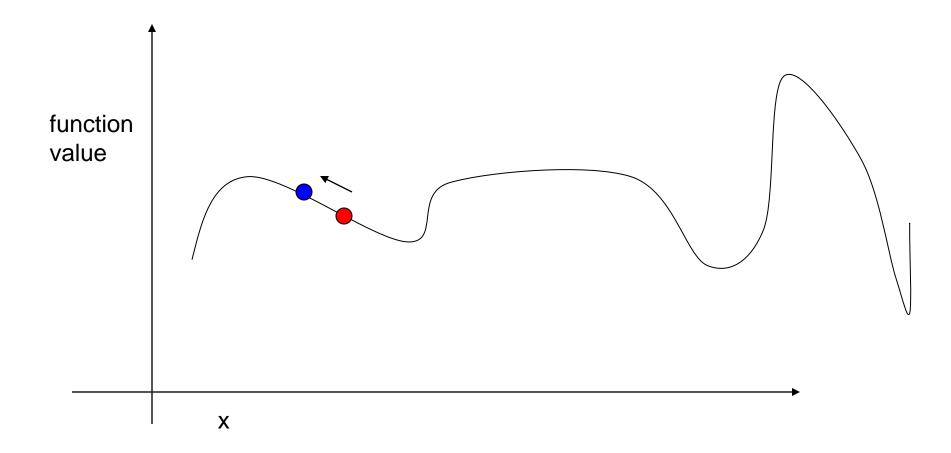
(b) Take *derivatives*, check = 0

Following "Gradient Flows"

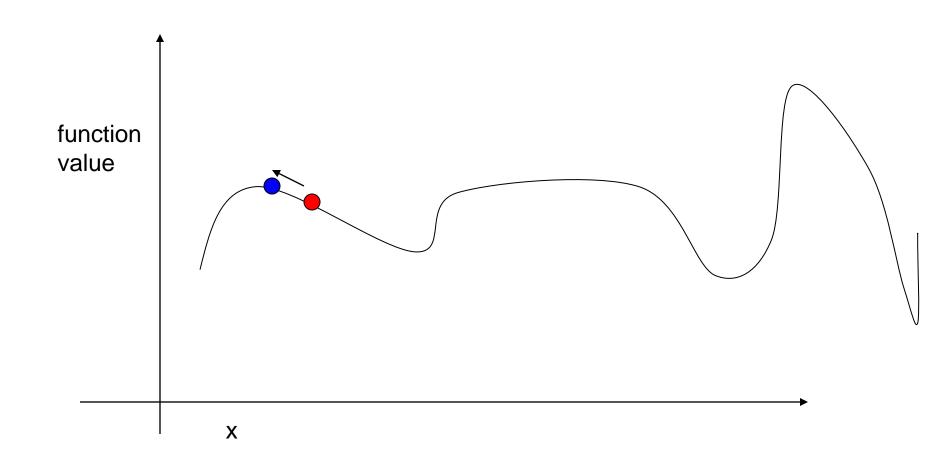
• Random Starting Point



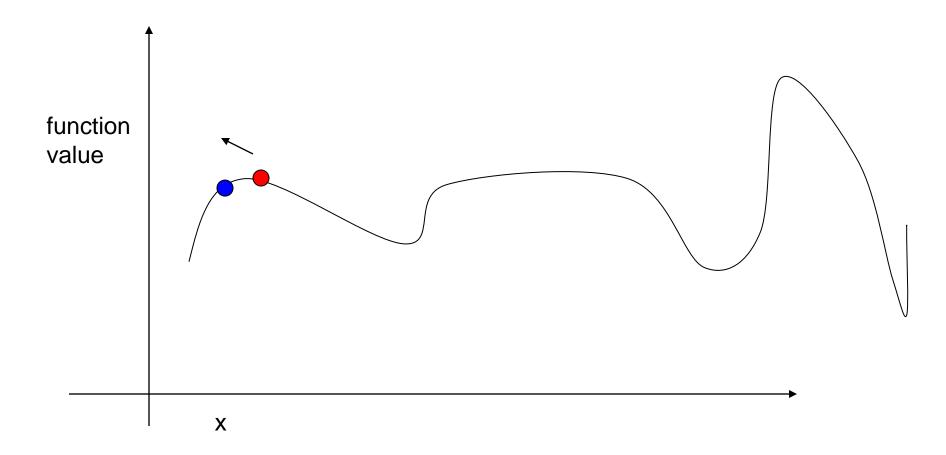
• Take step in direction of largest increase (obvious in 1D, must be computed in higher dimensions)



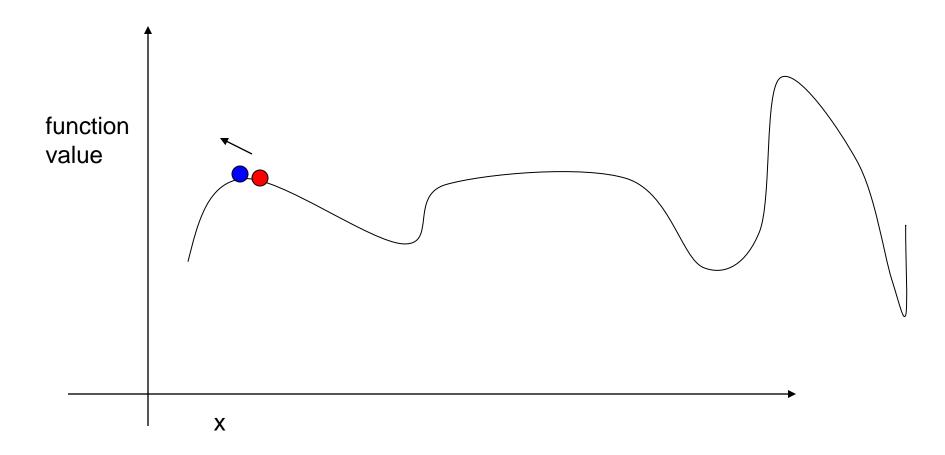
• Repeat



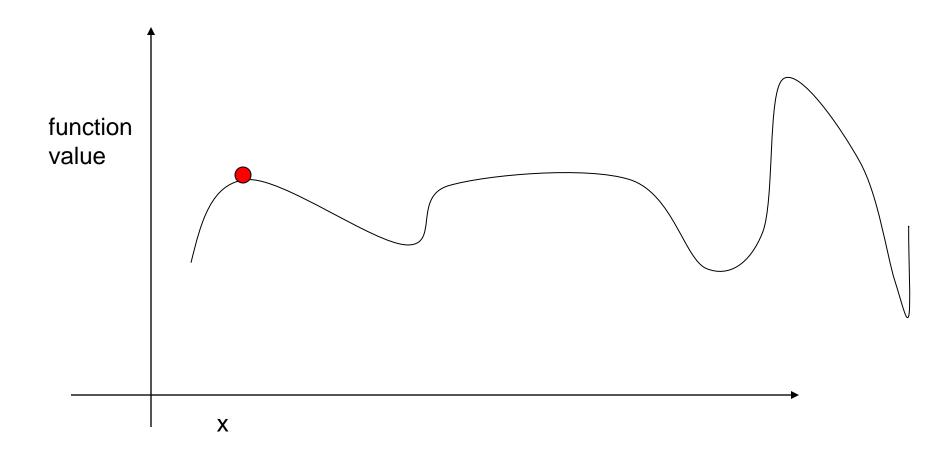
• Next step is actually lower, so stop



• Could reduce step size to "hone in"

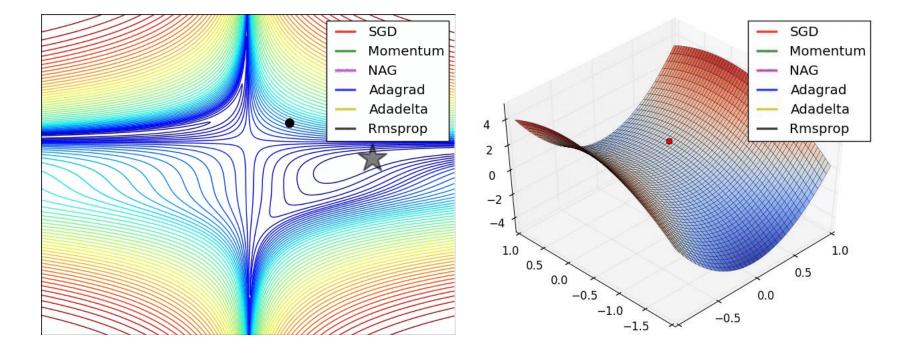


• Converge to (local) maximum



Newton's Method

Race of the Optimizers!



http://cs231n.github.io/neural-networks-3/#hyper

Problem Specification/Formulation

• General mathematical optimization (minimization) problem:

minimize $f_i(x), i = 1, 2, ..., M$

subject to $h_j(x) = 0$, j = 1, 2, ..., J $g_k(x) \le 0$, k = 1, 2, ..., K

- $f_i: \mathbf{R}^d \rightarrow \mathbf{R}$: objective/cost fnctn (maps search/design space -> solution/response space)
- $\mathbf{x} = (x_1, \dots, x_d)^T$: design variables unknowns of the problem, could be mix of discrete & continuous (contus) values (\mathbf{x} is "design vector")
- $h_j: \mathbf{R}^d \rightarrow \mathbf{R}$: inequality constraints
- $g_k: \mathbf{R}^d \rightarrow \mathbf{R}$: equality constraints
- This problem is a constrained optimization problem
 - Linear constraints + linear objectives \rightarrow linear programming problem

Algorithmic View: An Iterative Process

• [White board notes]

Questions?

