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Quick Logistic Note

* Make sure you pick your teams by this Thursday evening! (or get
random assignment)

* We will load balance to get as many to size 3 as needed

e Start thinking of your semester project/final topic
e Rubricisup

e Start searching for possible papers your team will be interested in
presenting for the weekly talks
* Can look at schedule and peruse textbook for things not covered

* Papers must be published in quality venues/journals and be squarely about
metaheuristic optimization



Why Optimization Again?

* Assume a state (or solution) with many variables

* Assume some function that you want to maximize/minimize value of
* E.g. a “goodness” function

* Searching entire space is too complicated
e Cannot evaluate every possible combination of variables
* Function might be difficult to evaluate analytically






Problems!!

local min local max saddle point




Simple Example: The Idealized Climb

* One dimension (typically use more):

function
value




Simple Example: The Idealized Climb

 Start at a valid state, try to maximize

function
value




Simple Example: The Idealized Climb

* Move to better state

function
value




Simple Example: The Idealized Climb

* Try to find maximum

function
value




Stochastic Hill-Climbing Search

* Steepest ascent, but random selection/generation of neighbor
candidates/positions (variations: first-choice hill climbing, random-
restart hill-climbing)

function HILL-CLIMBING( problem) returns a state that is a local maximum
inputs: problem, a problem o e — -
local variables: current, a node | Generate a random sample/set of
neighbor, a node neighbors around current, choose

current <~ MAKE-NODE(INITIAL-STATE[problem
loop do
| neighbor < a highest-valued succ current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current < neighbor
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Simple Example

 Random Starting Point

function
value




Simple Example

* Three random steps

function
value




Simple Example

* Choose Best One for new position

function
value




Simple Example

* Repeat

function
value




Simple Example

* Repeat

function
value




Simple Example

* Repeat

function
value




Simple Example

* Repeat

function
value




Simple Example

* No Improvement, so stop.

function
value




Some Theoretical Guidance



No Free Lunch (NFL) Theorem(s)

You can only get generalization through assumptions. No one algorithm will
solve all problems (some will work better than others in some instances).
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NFL Theorem (Wolpert & Macready, 1997)

* If any algo A outperforms another algo B in search for an extremum
of objective function, then algo B will outperform algo A on other
objective functions

* Where any 6 (discrete/contus/mixed) maps cost function into a finite set
* Applies to both deterministic & stochastic problems

e Suggests that average performance over all possible cost functions is
same for all search algorithms
* Universally best method does not exist for all optimization problems

 BUT — this does not mean all algo’s perform equally well over some specific
functions or specific set of problems

* [White board notes]



NFL Theorem Implications/Issues

* Not proven yet for multi-objective functions (just single)

* For specific problem w/ specific cost functions, there usually exist
some algo’s more efficient than others

* IF we do not need to measure their average performance (otherwise, no
better than random search on average)

e Auger & Teytaud (2010) — contus problems can be free (perhaps)

* Mashall & TG Hinton (2010) — assumption of time-ordered set of m
distinct points/visits not valid for real-life algo’s (which violates basic
assumption of non-revisitation, etc.)



Algorithm Decisions/Choices

* For given type of problem, what is the best algo to use? (very hard!)

* Issue
* Might not know efficiency of algo before trying it
* Some algorithms do not yet “exist” (need development/modification)
* Meta/hyper-parameters — depends on decision-maker, resources, problem type

* For given algo, what kinds of problems can it solve?

* Issue
* Explore algo on different problems, compare & rank w.r.t. efficiency
* Find advantages/disadvantages to guide algo choice
 Domain knowledge always helps in choosing best/most efficient methods
* Ex: Airplanes — if start from shape of bird/fish, design will likely be more useful



Gradient Descent (or Ascent)

* Simple modification to hill climbing
* Generally assumes a continuous state space

* |dea is to take more intelligent steps

* Look at local gradient: the direction of largest change

* Take step in that direction

 Step size should be proportional to gradient

* Tends to yield much faster
convergence to maximum

Discretization methods turn continuous space into discrete space,
e.g., empirical gradient considers £4 change in each coordinate

Gradient methods compute
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to increase/reduce f, e.g., by x «— x + aV f(x)
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The Value of Derivatives

* How do you solve the following problems?

(1) .
LLocal minima
‘\,/\'< - Global minima
(2) min f(w) =(W-5)?| ——> (@Plot j

—

5
(b) Take derivatives, check =0
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You want to build a simple univariate regression model for predicting profits y for a food truck.

Furthermore, you decide to restrict yourself to a linear hypothesis space and construct a model that
adheres to the following form:

felz) =0y + b1z

Given the data you have collected, represented as a set of m complete (y, x) pairs, your goals will
be to estimate the parameters of this model © = {0, } (where #;- is the vector of learnable
coefficients that weight the observed variables, and f; is a single bias coefficient) using the method

of steepest gradient descent. The cost function to minimize is the well-known mean squared error
(MSE) defined as follows:

7(0) = 53 (folz') — y')?
1=1

What is a useful constrained version of this cost to get “smaller” coefficients?

Linear Regression & Gradient Descent



You want to build a simple univariate regression model for predicting profits y for a food truck.

Furthermore, you decide to restrict yourself to a linear hypothesis space and construct a model that
adheres to the following form:

felz) =60+ b1
Given the data you have collected, represented as a set of m complete (y, x) pairs, your goals will
be to estimate the parameters of this model © = {0, } (where #;- is the vector of learnable

coefficients that weight the observed variables, and f; is a single bias coefficient) using the method

of steepest gradient descent. The cost function to minimize is the well-known mean squared error
(MSE) defined as follows:

7(0) = -~ 3 (fol') ')
1=1

What is a useful constrained version of this cost to get “smaller” coefficients?
(Hint: Tikhonov regularization)

Linear Regression & Gradient Descent



The gradient of the negative log likelihood with respect to the model parameters © = {#,, f, }, after
application of the chain rule, takes the general form:

S =—Z(fe{r)—y):c =012

where j indexes a particular parameter, noting that xy = 1E| In the univariate (single-variable) case,
this leads us to utilize the following two specific gradients:

9T7(O m . .
= Y Uel) ~v)ed

o) - IZ(fe{r ) =1) = L3 (fola’) — )

i=1

where we see that the partial derivative of the loss with respect to #; (the bias b) takes a simpler form
given that the feature it weights is simply 25 = 1 (we are essentially augmenting the pattern x with
a bias of one, which allows us to model the mean p of the data’s distribution, assuming that it is
(zaussian distributed).

To learn model parameters using batch gradient descent, we will need to implement the following
update rule (for each #; in ©):
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The regularized loss function (making this ridge regression) takes the fﬂllﬂwing form:

A “soft” constraint!
1

=1

where (3 is another meta-parameter for us to set (through trial and error, or, in practice, through proper

cross-fold validation). The gradient of this regularized form of the loss with respect to parameters ©
is straightforward:
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except for the case of 7 = 0 (which indexes the bias parameter), on which the penalty is not applied.




Questions?
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