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In the modern world, pennies matter, microseconds matter, 
microns matter.



Categories of Decision making problems

Category 1:

• The set of possible alternatives for the decision is a finite discrete 
set typically consisting of a small number of elements.
• Example: “A teenage girl knows four boys all of whom she likes, and has to 

decide who among them to go steady with.”

• Solution: scoring methods

Category 2:

• The number of possible alternatives is either infinite, or finite but 
very large, and the decision may be required to satisfy some 
restrictions and constraints 

• Solution: unconstrained and constrained optimization methods



Category 2 Decision Problems & Solution Flow

1. Get a precise definition of the problem, all relevant data and 
information on it.

• Uncontrollable factors (random variables)

• Controllable inputs (decision variables)

2. Construct a mathematical (optimization) model of the problem.
• Build objective functions and constraints

3. Solve the model
• Apply the most appropriate algorithms for the given problem

4. Implement the solution























Convex vs. non-convex 
optimization problems!
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Optimization at a Glance

• Optimization is the act of obtaining the best result under given 
circumstances. 

• Optimization can be defined as the process of finding the conditions that 
give the maximum or minimum of  a function.

• The optimum seeking methods are also known as mathematical 
programming techniques and are generally studied as a part of operations 
research.

• Operations research is a branch of mathematics concerned with the 
application of scientific methods and techniques to decision making 
problems and with establishing the best or optimal solutions.
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Problem Specification/Formulation

• General mathematical optimization (minimization) problem:

• fi : R
d R: objective/cost fnctn (maps search/design space -> solution/response space)

• x=(x1,…..,xd)
𝑇: design variables - unknowns of the problem, could be mix of discrete 

& continuous (contus) values (x is “design vector”)

• hj : Rd R: equality constraints

• gk : Rd R: inequality constraints

• This problem is a constrained optimization problem
• Linear constraints + linear objectives → linear programming problem

minimize 𝑓𝑖 𝒙 , 𝑖 = 1, 2, … , 𝑀

subject to ℎ𝑗 𝒙 = 0,  𝑗 = 1, 2, … , 𝐽

𝑔𝑘 𝒙 ≤ 0, 𝑘 = 1, 2, … , 𝐾
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Some History
Historical development

• Isaac Newton (1642-1727)

(The development of differential calculus

methods of optimization)

• Joseph-Louis Lagrange (1736-1813)

(Calculus of variations, minimization of functionals,

method of optimization for constrained problems)

• Augustin-Louis Cauchy (1789-1857)

(Solution by direct substitution, steepest 

descent method for unconstrained optimization) 
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Some History

Historical development

• Leonhard Euler (1707-1783)

(Calculus of variations, minimization of

functionals)

• Gottfried Leibnitz (1646-1716)

(Differential calculus methods

of optimization) 
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Some History

Historical development

• George Bernard Dantzig (1914-2005)

(Linear programming and Simplex method (1947))

• Richard Bellman (1920-1984)

(Principle of optimality in dynamic

programming problems) 

• Harold William Kuhn (1925-)

(Necessary and sufficient conditions for the optimal solution of programming problems, game 
theory)
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Some History

Historical development

• Albert William Tucker (1905-1995)

(Necessary and sufficient conditions

for the optimal solution of programming

problems, nonlinear programming, game

theory: his PhD student 

was John Nash)

• Von Neumann (1903-1957)

(game theory)
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Equivalence between Minimum and Maximum

• If a point x* corresponds to the minimum value of the function f (x),

the same point also corresponds to the maximum value of the negative 

of the function, -f (x). 

– This means optimization can be re-interpreted to mean minimization since the maximum 

of a function can be found by seeking the minimum of the negative of the same function.



Books to Read

• Practical Optimization
• Philip E. Gill, Walter Murray, and Margaret H. Wright, 

Academic Press,  1981

• Practical Optimization: Algorithms and Engineering 
Applications

• Andreas Antoniou and Wu-Sheng Lu, 2007

• Both cover unconstrained and constrained 
optimization. Very clear and comprehensive.



Optimization: 
A Local Search Perspective
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Local Search Algorithms
•Optimization Problems

• Path to goal often irrelevant; goal state is the solution 
(e.g. n-queens problem, training neural networks)

• Also good for problems w/ no goal test/path cost

•State space (search space)
• Represented by set of complete state configurations
• Can be discrete or continuous (contus)

•Search Goal
• Find configuration satisfying constraints, e.g., n-queens

•Local Search Algorithms
• Keep a single "current" state (= candidate solution), 

improves it if possible (iterative improvement)



Local Search:  Iterative improvement

• Start with a complete valid state

• Gradually work to improve to better and better states
• Sometimes, try to achieve an optimum, though not always possible

• Sometimes states are discrete, sometimes continuous



Optimization & State-Space Landscape
• Goal types: 

• Objective function -> find global max, find global min (usually not possible, so local)

• Complete = finds optima if it exists, Optimal = finds global optima 
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Hill-Climbing Search

• "Like climbing Everest in a thick fog with amnesia”, steepest ascent

• Terminates if cost/objective goes down
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Variations of Hill-Climbing

- Stochastic hill climbing (selection probability depends on steepness of uphill 
move)

- First-choice hill-climbing = randomly generate successors until one is better than 
current

- All incomplete!
- Unless use random restart (if at first don’t succeed, try, try again), i.e., random restart hill-

climbing = a # of restarts required proportional to probability of success p (or 1/p)

• Can work on n-million queens problem

- NP-hard problems have exponential number of local optima

• The Hope: find “good enough” local optima
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Local Search Landscape & Climbing Hills

•Problem 
• Stuck in
• local maxima

•Random-Restart Hill Climbing
• Do series of hill-climbing searches from randomly chosen 

initial state

State Space
Landscape



Why Optimization Again?

• Assume a state (or solution) with many variables

• Assume some function that you want to maximize/minimize value of
• E.g. a “goodness” function

• Searching entire space is too complicated
• Cannot evaluate every possible combination of variables

• Function might be difficult to evaluate analytically
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Types of Minima

• Which of the minima is found depends on the starting point

• Such minima often occur in real applications

x

f(x)
strong
local

minimum

weak
local

minimum strong
global

minimum

strong
local

minimum

feasible region



Problems!!
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Simple Example: The Idealized Climb

• One dimension (typically use more):

x

function

value



Simple Example: The Idealized Climb

• Start at a valid state, try to maximize

x

function

value



Simple Example: The Idealized Climb

• Move to better state

x

function

value



Simple Example: The Idealized Climb

• Try to find maximum

x

function

value



Questions?
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