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So... what is mathematical
optimization, anyway?

“Optimization” comes from the same root as
“optimal”, which means best. When you
optimize something, you are “making it best”.

But “best” can vary. If you're a football player,
you might want to maximize your running
yards, and also minimize your fumbles. Both
maximizing and minimizing are types of
optimization problems.

In the modern world, pennies matter, microseconds matter,
microns matter.



Categories of Decision making problems

Category 1.

* The set of possible alternatives for the decision is a finite discrete
set typically consisting of a small number of elements.

* Example: “A teenage girl knows four boys all of whom she likes, and has to
decide who among them to go steady with.”

 Solution: scoring methods

Category 2:

 The number of possible alternatives is either infinite, or finite but
very large, and the decision may be required to satisfy some
restrictions and constraints

* Solution: unconstrained and constrained optimization methods



Category 2 Decision Problems & Solution Flow

1. Get a precise definition of the problem, all relevant data and
information on it.
* Uncontrollable factors (random variables)
e Controllable inputs (decision variables)

2. Construct a mathematical (optimization) model of the problem.
e Build objective functions and constraints

3. Solve the model
* Apply the most appropriate algorithms for the given problem

4. Implement the solution



Mathematical Optimization in the
“Real World”

Mathematical Optimization is a branch of
applied mathematics which is useful in many
different fields. Here are a few examples:

* Manufacturing * Engineering

* Production * Mechanics

* Inventory control * Economics

* Transportation * Control engineering
* Scheduling * Marketing

* Networks * Policy Modeling

* Finance



Optimization Vocabulary

Your basic optimization problem consists of...

* The objective function, f(x), which is the output
you're trying to maximize or minimize.
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Optimization Vocabulary

Your basic optimization problem consists of...

* The objective function, f(x), which is the output
you’re trying to maximize or minimize.

* Variables, x, X, X3 and so on, which are the inputs —
things you can control. They are abbreviated x,, to
refer to individuals or x to refer to them as a group.

* Constraints, which are equations that place limits
on how big or small some variables can get.
Equality constraints are usually noted h_(x) and
inequality constraints are noted g, (x).



Optimization Vocabulary

A football coach is planning practices for his running backs.

* His main goal is to maximize running yards — this will
become his objective function.

* He can make his athletes spend practice time in the weight
room; running sprints; or practicing ball protection. The
amount of time spent on each is a variable.

* However, there are limits to the total amount of time he
has. Also, if he completely sacrifices ball protection he may
see running yards go up, but also fumbles, so he may place
an upper limit on the amount of fumbles he considers
acceptable. These are constraints.

Note that the variables influence the objective function and
the constraints place limits on the domain of the variables.



Types of Optimization Problems

* Some problems have constraints and some do
not.
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Types of Optimization Problems

Some problems have constraints and some do not.
There can be one variable or many.

Variables can be discrete (for example, only have integer
values) or continuous.

Some problems are static (do not change over
time) while some are dynamic (continual
adjustments must be made as changes occur).
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Types of Optimization Problems

Some problems have constraints and some do not.
There can be one variable or many.

Variables can be discrete (for example, only have integer
values) or continuous.

Some problems are static (do not change over time) while
some are dynamic (continual adjustments must be made as
changes occur).

Systems can be deterministic (specific causes
produce specific effects) or stochastic (involve
randomness/ probability).
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Types of Optimization Problems

* Some problems have constraints and some do not.
* There can be one variable or many.

* Variables can be discrete (for example, only have integer
values) or continuous.

* Some problems are static (do not change over time) while
some are dynamic (continual adjustments must be made as
changes occur).

* Systems can be deterministic (specific causes produce specific
effects) or stochastic (involve randomness/ probability).

Equations can be linear (graph to lines) or
’ nonlinear (graph to curves) /
Convex vs. nhon-convex
optimization problems! /\/\




Why Mathematical Optimization is
worth learning

Q: Which of these things is not like the others?
a) A degree in engineering
b) A degree in chemistry
c) A degree in pure mathematics
d) A large pepperoni pizza



Why Mathematical Optimization is
worth learning

Q: Which of these things is not like the others?
a) A degree in engineering
b) A degree in chemistry

QA degree in pure mathematiD

d) A large pepperoni pizza

(With the others, you can feed a family of four)



Optimization at a Glance

Optimization is the act of obtaining the best result under given
circumstances.

Optimization can be defined as the process of finding the conditions that
give the maximum or minimum of a function.

The optimum seeking methods are also known as mathematical
programming techniques and are generally studied as a part of operations
research.

Operations research is a branch of mathematics concerned with the
application of scientific methods and techniques to decision making
problems and with establishing the best or optimal solutions.
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Problem Specification/Formulation

« General mathematical optimization (minimization) problem:
minimize f;(x),i =1,2,..,M

subjectto h;j(x) =0, j=1,2,..,]
gk(x) < O, k= 1, 2, ,K
- f.: RY —R: objective/cost fnctn (maps search/design space -> solution/response space)

* X=(x,,......x,)" : design variables - unknowns of the problem, could be mix of discrete
& continuous (contus) values (X is “design vector™)

* h;: R — R: equality constraints
* g,: RY— R: inequality constraints

 This problem is a constrained optimization problem

- - - - - - - 21
 Linear constraints + linear objectives = linear programming problem



Some History

Historical development

* Isaac Newton (1642-1727)
(The development of differential calculus

methods of optimization)

* Joseph-Louis Lagrange (1736-1813)
(Calculus of variations, minimization of functionals,

method of optimization for constrained problems)

e Augustin-Louis Cauchy (1789-1857)
(Solution by direct substitution, steepest

descent method for unconstrained optimization)

Augustin Louis Cauchy
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Some History

Historical development

* Leonhard Euler (1707-1783)
(Calculus of variations, minimization of

functionals)

e Gottfried Leibnitz (1646-1716)
(Differential calculus methods

of optimization)

isim: Gottfired Wilhelm von Leibniz
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Some History

Historical development

* George Bernard Dantzig (1914-2005)
(Linear programming and Simplex method (1947))

e Richard Bellman (1920-1984)
(Principle of optimality in dynamic

programming problems)

* Harold William Kuhn (1925-)

(Necessary and sufficient conditions for the optimal solution of programming problems, game
theory)
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Some History

Historical development

e Albert William Tucker (1905-1995)
(Necessary and sufficient conditions
for the optimal solution of programming
problems, nonlinear programming, game
theory: his PhD student
was John Nash)

* Von Neumann (1903-1957)
(game theory)

John von Neumann
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Equivalence between Minimum and Maximum

 |If a point x* corresponds to the minimum value of the function f (x),
the same point also corresponds to the maximum value of the negative
of the function, -f (x).

— This means optimization can be re-interpreted to mean minimization since the maximum
of a function can be found by seeking the minimum of the negative of the same function.
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Figure 1.1 Minimum of f(x) is same as maximum of —f(x).
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Books to Read

* Practical Optimization
PRACTICAL

* Philip E. Gill, Walter Murray, and Margaret H. Wright, OPTIMIZATION
Academic Press, 1981

; Philip E. Gill
7 Walter Murray
and

7/} Margaret H.Wright

* Practical Optimization: Algorithms and Engineering :
Applications Practical

* Andreas Antoniou and Wu-Sheng Lu, 2007 Optimization

Algorithms and Engineering Applications

Andreas Antoniou

* Both cover unconstrained and constrained W Sheng L
optimization. Very clear and comprehensive.




Optimization:
A Local Search Perspective



Local Search Algorithms

*Optimization Problems

* Path to goal often irrelevant; goal state is the solution
(e.g. n-queens problem, training neural networks)
» Also good for problems w/ no goal test/path cost

State space (search space)
* Represented by set of complete state configurations
e Can be discrete or continuous (contus)

*Search Goal
* Find configuration satisfying constraints, e.g., n-queens

*Local Search Algorithms

» Keep a single "current" state (= candidate solution),
improves it if possible (iterative improvement)
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Local Search: Iterative improvement

 Start with a complete valid state

* Gradually work to improve to better and better states
* Sometimes, try to achieve an optimum, though not always possible

* Sometimes states are discrete, sometimes continuous



Optimization & State-Space Landscape

e Goal types:

* Objective function -> find global max, find global min (usually not possible, so local)

* Complete = finds optima if it exists, Optimal = finds global optima
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Hill-Climbing Search

* "Like climbing Everest in a thick fog with amnesia”, steepest ascent
* Terminates if cost/objective goes down

function HILL-CLIMBING( problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current < MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor +— a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current < neighbor

32



Example: n-queens

Put n queens on an n X n board with no two queens on the same
row, column, or diagonal

Move a queen to reduce number of conflicts

h=2

Almost always solves n-queens problems almost instantaneously
for very large n, e.g., n= 1lmillion

33

Chapter 4, Bections 3-4



Variations of Hill-Climbing

Stochastic hill climbing (selection probability depends on steepness of uphill
move)

First-choice hill-climbing = randomly generate successors until one is better than
current

All incomplete!

- Unless use random restart (if at first don’t succeed, try, try again),i.e., random restart hill-
climbing = a # of restarts required proportional to probability of success p (or 1/p)

Can work on n-million queens problem

NP-hard problems have exponential number of local optima

The Hope: find “good enough” local optima



Local Search Landscape & Climbing Hills
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*Random-Restart Hill Climbing

* Do series of hill-climbing searches from randomly chosen
initial state
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Why Optimization Again?

* Assume a state (or solution) with many variables

* Assume some function that you want to maximize/minimize value of
* E.g. a “goodness” function

* Searching entire space is too complicated
e Cannot evaluate every possible combination of variables
* Function might be difficult to evaluate analytically






Types of Minima

f(x)

feasible region X

* Which of the minima is found depends on the starting point

* Such minima often occur in real applications



Problems!!

local min local max saddle point

40



Simple Example: The Idealized Climb

* One dimension (typically use more):

function
value




Simple Example: The Idealized Climb

 Start at a valid state, try to maximize

function
value




Simple Example: The Idealized Climb

* Move to better state

function
value




Simple Example: The Idealized Climb

* Try to find maximum

function
value




Questions?
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