
GRADIENT-FREE REINFORCEMENT LEARNING WITH
ACTIVE NEURAL GENERATIVE CODING

Alexander G. Ororbia ∗
Rochester Institute of Technology

ago@cs.rit.edu

Ankur Mali ∗
Pennsylvania State University

aam35@psu.edu

ABSTRACT

In humans, perceptual awareness facilitates the fast recognition and extraction of information
from sensory input. This awareness largely depends on how the human agent interacts with
its environment. In this work, we propose active neural generative coding, a computational
framework for learning action-driven generative models without backpropagation of errors
(backprop) in dynamic environments. Specifically, we develop an intelligent agent that can
operate even with sparse reward signals, drawing inspiration from the cognitive theory of
planning as inference. We demonstrate on several reinforcement learning control problems, in
the online learning setting, that our proposed modeling framework performs competitively with
deep Q-learning models. The robust performance of our agents offers promising evidence that a
backprop-free approach for neural inference and learning can drive goal-directed behavior.

Keywords Predictive processing · reinforcement learning · planning as inference · neural generative coding

1 Introduction

Manipulating one’s environment in the effort to understand it is an essential ingredient of learning in humans [72, 6].
In cognitive neuroscience, behavioral and neurobiological evidence indicates a distinction between goal-directed
and habitual action selection in reward-based decision-making. With respect to habitual action selection, or actions
taken based on situation-response associations, abundant evidence exists to support the temporal-difference (TD)
account from reinforcement learning. In this account, the neurotransmitter dopamine creates an error signal based
on reward prediction to drive (state) updates in the corpus striatum, a particular neuronal region in the basal ganglia
that affects an agent’s choice of action. In contrast, goal-directed action requires prospective planning where
actions are taken based on predictions of their future potential outcomes [46, 71]. Planning-as-inference (PAI) [7]
attempts to account for goal-directed behavior by casting it as a problem of probabilistic inference where an agent
manipulates an internal model that estimates the probability of potential action-outcome-reward sequences.

One important, emerging theoretical framework for PAI is that of active inference [18, 79], which posits that
biological agents learn a probabilistic generative model by interacting with their world, adjusting the internal
states of this model to account for the evidence that they acquire from their environment. This scheme unifies
perception, action, and learning in adaptive systems by framing them as processes that result from approximate
Bayesian inference, elegantly tackling the exploration-exploitation trade-off inherent to organism survival. The
emergence of this framework is timely – in reinforcement learning (RL) research, despite the recent successes
afforded by artificial neural networks (ANNs) [38, 68], most models require exorbitant quantities of data to train
well, struggling to learn tasks as efficiently as humans and animals [2]. As a result, a key challenge is how to design
RL methods that successfully resolve environmental uncertainty and complexity given limited resources and data.

It has been argued that developing approaches that progressively build a useful model of the agent’s world, i.e.,
a world [24] or dynamics model [75], would greatly reduce the sample inefficiency that plagues current RL,
particularly since most modern state-of-the-art approaches are model-free - they directly attempt to learn a policy
from immediate interactions with the environment, i.e., associative/habitual learning. Crucially, a generative model
would facilitate more intelligent and efficient exploration of large and complex search spaces, which is critical in

∗Both authors contributed equally.

Preprint, Work in Progress

scenarios where the reward signal is sparse, difficult to learn from, and is often problem-specific (which hinders the
design of more general-purpose agents). Furthermore, a world model would be useful for designing mechanisms
that facilitate planning over long temporal horizons such as in the Dyna-Q setup [75]. Thus, the active inference
framework provides a promising path towards powerful, model-based RL [78]. Nonetheless, learning a world
model is not easy – if the dynamics of the agent’s world are complicated then a complex generative model will be
needed, requiring more data and thus worsening sample efficiency (the very problem we want to solve). Therefore,
the generative model employed must learn quickly and online if any benefit is to be realized.

Although PAI and active inference offer an excellent story for biological system behavior and a promising
model-based RL framework, most computational implementations are formulated with explainability in mind
(favoring meaningfully labeled albeit low-dimensional, discrete state/action spaces) and in the form of complex
probabilistic graphical models that do not scale easily [19, 16, 21, 22]. In response, effort has been made to scale
active inference by using deep ANNs [80, 77] trained by the popular backpropagation of errors (backprop) [62].
While ANNs represent a powerful step in the right direction, one common criticism of using them within the
normative framework of RL is that they have little biological relevance despite their conceptual value [31, 87].
Importantly, from a practical point-of-view, they also suffer from practical issues related to their backprop-centric
design [52]. This raises the question: can a biologically-motivated alternative to backprop ANNs also facilitate
reinforcement learning through active inference in a scalable way? In this paper, motivated by the fact that animals
and humans solve the RL problem, we will develop one possible alternative that positively answers this question.

a t

ot

External World Internal Model

Cor
rect

Generate

rt

Figure 1: Schematic representation of the intuition behind
an ANGC model. The agent continually predicts the state of
the world, acts to manipulate it, and then corrects its internal
model given observations and reward signals.

As a result, the neural agent we propose represents
a promising step forward towards better modeling
the approximations that biological neural circuitry
implements when facing real-world resource con-
straints and limitations, creating the potential for
developing new theoretical insights. Such insights
will allow us to design agents better capable of deal-
ing with continuous, noisy sensory patterns [46].

While many backprop-alternative (gradient-free) al-
gorithms have recently been proposed [44, 47, 32,
35, 64, 23, 83, 52], few have been investigated out-
side the context of supervised learning, with some
notable exceptions in sequence [85, 49, 36] and gen-
erative modeling [48]. In the realm of RL, aside
from neuro-evolutionary approaches [74, 27], the
dearth of work is more prescient and it is our intent
to close this gap by providing a backprop-free approach to inference and learning, which we call active neural
generative coding (ANGC), to drive goal-oriented agents. In our proposed agent system, we demonstrate how
a scalable, biologically-plausible inference and learning process, grounded in the neuro-biologically theory of
predictive processing [14, 12], can lead to adaptive, self-motivated behavior in the effort to balance the exploration-
exploitation trade-off in RL. One key element to consider is that ANGC offers robustness even in settings with
sparse rewards which other gradient-free methods such as neuroevolution [74, 27] struggle with.2 To evaluate the
efficacy of ANGC, we implement an agent structure that is tasked with solving several control problems often
experimented with in RL and compare performance against deep Q-learning, a popular backprop-based approach.

2 Active Neural Generative Coding

To specify our proposed ANGC agent, the high-level intuition of which is illustrated in Figure 1, we start by first
defining the fundamental building block used to construct it – the neural generative coding circuit.

2.1 The Neural Generative Coding Circuit

Neural generative coding (NGC) is a recently developed framework [48] that generalizes classical ideas in predictive
processing [59, 12] to the construction of scalable neural models that model and predict both static and temporal
patterns [49, 48]. An NGC model is composed of L layers of stateful neurons, where the activity values of each
layer ` = {0, 1, · · · , L} is represented by the vector z` ∈ RJ`×1 (any layer contains J` neurons emitting activity
signals), that are engaged in a process of never-ending guess-then-correct. Generally, an NGC model’s bottom-most

2This is due to the fact that it is difficult to determine a strong encoding solution/scheme as well as an effective breeding
strategy for the underlying genetic algorithm. Such design choices play a large role in the success of the approach.

2

Preprint, Work in Progress

Algorithm 1 The NGC model projections, inference, and weight update routines.

Input: Sample (xi,xo) (from sensory stream), β, βe, γv , γe, η, K, Θ, choice of φ` & g`, and cε = 10−6

function PROJECT(xi,Θ)
// Ancestrally project pattern through model
z̄L = xi

for ` = L− 1 to 0 do
Get W`+1 from Θ, z̄` = g`(W

`+1 ∗ φ`+1(z̄`+1))

Return z̄0

function INFERSTATES(xi,xo,Θ)
// Simulate stimulus presentation time over K steps
z0 = xo, z1 = 0, · · · , z` = 0, · · · , zL = xi

e0 = z0 − 0, e1 = 0, · · · , e` = 0, · · · , eL = 0
for k = 1 to K do

// Correct latent states given current value of error units
for ` = 1 to L do

Get E` from Θ, z` ← z` + β(−γvz` − e` + (E` ∗ e`−1) + ϑ(z`))) . Maps to Eqn. 2
// Compute layer-wise predictions and error neuron values
for ` = L− 1 to 0 do

Get W`+1 from Θ, z̄` = g`(W
`+1 ∗ φ`+1(z`+1)), e` = 1

2βe
(φ`(z`)− z̄`) . Eqn. 1

Λ = {z0, z1, · · · , z`, · · · , zL}, E = {e0, e1, · · · , e`, · · · , eL−1}
Return Λ, E

function UPDATEWEIGHTS(Λ, E ,Θ)
// Adjust synaptic weight adjustments given states and error neurons
for ` = 1 to L do

Retrieve (W`,E`) from Θ

∆W` = e` ∗ (φ`+1(z`))T , ∆W` ← ∆W`

||∆W`||2+cε

∆E` = γe(∆W`)T , ∆E` ← ∆E`

||∆E`||2+cε

W` ←W` + η∆W`, E` ← E` + η∆E` . Can alternatively use Adam or RMSprop
W` ← 2W`

||W`||2+cε
, E` ← 2E`

||E`||2+cε
. Override current values of (W`,E`) in Θ

Θ̂ = {W0,E0,W1,E1, · · · ,WL,EL}
Return Θ̂

layer z0 is clamped to a sensory pattern extracted from the environment. However, in this work, we design an
NGC model that clamps both its top-most and bottom-most layers to particular sensory variables, i.e., zL = xi and
z0 = xo, allowing the agent to process streams of data vector pairs (xi,xo) where xi ∈ RJL×1 and xo ∈ RJ0×1.

Specifically, in an NGC model, layer z`+1 attempts to guess the current post-activity value of layer φ`(z`) by
generating a prediction vector z̄` using a matrix of forward synaptic weights W`+1 ∈ RJ`×J`+1 . The prediction
vector is then compared against the target activity by a corresponding set of error neurons e` which simply perform
a direct mismatch calculation as follows: e` = 1

βe
(φ`(z`)− z̄`).3 This error signal is finally transmitted back to

the layer that made the prediction z̄` through a complementary matrix of error synapses E`+1 ∈ RJ`+1×J` . Given
the description above, the set of equations that characterize the NGC neural circuit and its key computations are:

z̄` = g`

(
W`+1 ∗ φ`+1(z`+1)

)
, e` =

1

2βe
(φ`(z`)− z̄`) (1)

z`+1 ← z`+1 + β
(leak︷ ︸︸ ︷
−γvz`+1

top-down + bottom-up pressure︷ ︸︸ ︷
−e`+1 + (E`+1 · e`) +

lateral term︷ ︸︸ ︷
ϑ(z`+1))

)
(2)

where ∗ indicates matrix/vector multiplication and φ`+1 and g` are element-wise activation functions, e.g., the
hyperbolic tangent tanh(v) = (exp(2v) − 1)/(exp(2v) + 1) or the linear rectifier φ`(v) = max(0, v). In this
paper, we set g` as the identity, i.e., g`(v) = v, for all layers (though for the bottom layer g0 could be set to a
function such as the logistic sigmoid depending on the type of data being predicted [48]). In Equation 2, the

3One may replace the term 1
2βe

with Σ−1, i.e., a learnable, lateral modulation matrix that applies precision-weighting to the
error units, to recover the setup of [48]. We defer the use of precision weights for future work.

3

Preprint, Work in Progress

z2

z 1

z 0

z 1

z 0

e 1

e 0

x

x=

=

i

o

(a) An example NGC circuit.

ot

tt

ot+1

rt

rte

rti

Environment

Controller

Generator

at

at

(b) The ANGC agent architecture.

Figure 2: An NGC circuit is depicted on the left and the high-level ANGC architecture (with both an NGC controller
and generator) is shown on the right. Green diamonds represent error neurons, empty rectangles represent state
neurons, solid arrows represent individual synapses, dash-dotted arrows represent direct copying of information,
open circles indicate excitatory signals, and filled squares/diamonds indicate inhibitory signals.

coefficient that weights the correction applied to state layer `+ 1 is determined by the formula β = 1
τ where τ is

the integration time constant in the order of milliseconds. The leak variable −γvz` decays the state value over time
(γv is a positive coefficient to control its strength). ϑ(z`) is lateral excitation/inhibition term, which is a function
that creates different competition patterns among the neurons inside of layer ` [48] – in this paper we set ϑ(z`) = 0
since its effect is not needed for this study. Upon encountering data (xi,xo), the model’s top and bottom layers are
clamped, i.e., zL = xi and z0 = xo, and Equations 1-2 are run K times in order to search for appropriate internal
activity values {z1, · · · , zL−1} (see INFERSTATES in Algorithm 1 for how this cycle is implemented).

After the appropriate internal activities have been found, the synaptic weight matrices may be adjusted using a
simple local error Hebbian rule adapted from local representation alignment (LRA) [52, 50]:

∆W` = e` ∗ (φ`(z`+1))T , and, ∆E` = γe(∆W`)T

where γe controls the time-scale at which the error synapses are adjusted (usually values in the range of [0.9, 1.0]
are used). Once the updates to the NGC weight matrices have been computed, an update rule such as stochastic
gradient ascent, Adam [30], or RMSprop [76] can be used (see UPDATEWEIGHTS in Algorithm 1 for an example
of how gradient ascent is concretely implemented).

The online objective that an NGC model attempts to minimize is known as total discrepancy [51], from which
the error neuron, state update expressions, and local synaptic adjustments may be derived [50, 48]. The total
discrepancy objective, which could also be interpreted as a form of free energy [15] specialized for the case of
stateful neural models that utilize arbitrary forward and error synaptic wiring pathways [50], can be expressed in
many forms including the linear combination of local density functions [48] or the summation of local distance
functions [49]. For this study, the form of total discrepancy we used to derive the expressions above is the linear
combination of distance functions: L(Θ) =

∑L−1
`=0 L(z`, z̄`) =

∑L−1
`=0

1
2βe
||(z` − z̄`)||22 =

∑L−1
`=0

1
2βe
||e`||22.

Algorithm 1 puts all of the equations and relevant details presented above together to describe the inference and
learning procedures of a full NGC model that processes (xi,xo) from a data stream. Notice that the algorithm
breaks down the model processing into three routines – INFERSTATES(◦), UPDATEWEIGHTS(◦), and PROJECT(◦).
INFERSTATES(◦) is simply the K-step described earlier to find reasonable values of the latent state activities given
clamped data and UPDATEWEIGHTS(◦) is the complementary procedure used for adjusting the synaptic weight
parameters once state activities have been found after using INFERSTATES(◦). PROJECT(◦) is a special function
that specifically clamps data xi to the top-most layer and projects this information directly through the underlying
directed graph defined by the NGC architecture – this routine is essentially a variant of the ancestral sampling
procedure defined in [48] but accepts any clamped input pattern instead of samples drawn from a prior distribution.
Figure 2a graphically depicts a three layer NGC model with 2 neurons in each layer.

4

Preprint, Work in Progress

2.2 Generalizing to Active Neural Coding

Given the definition of the NGC building block in the above section, we now turn our attention to the generalization
that incorporates actions. ANGC is built on the premise that an agent adapts to its environment by balancing a
trade-off between (at least) two key quantities – surprisal and preference. This means that our agent is constantly
tracking a measurement of how surprising the observations it encounters are at a given time step (which drives
exploration) as well as a measurement of its progress towards a goal. In effect, maximizing the sum of these two
terms means that the agent will seek observations that are most “suprising” (which yield the most information
when attempting to reduce uncertainty) while attempting to reduce its distance to a goal state (which maximizes
the discounted long-term future reward). Formally, this means that our ANGC agent will maximize the following:

rt = αer
e
t + αir

i
t = rint + rept (3)

which is a reward signal that can be decomposed into an instrumental (or goal-oriented) signal rint and an epistemic
(or exploration/information maximizing) signal rept . Each component signal is controlled by an importance factor,
αe for the epistemic term and αi for the instrumental term, and a raw internal signal produced either by the
generative model (ret to drive rept) or an external goal-directing signal (rit to drive rint).

Note that while we have chosen to interpret and represent the active inference view of the exploration-exploitation
trade-off as (dopamine) scalars, our objective, notably the instrumental signal, is not limited to this scheme and
could potentially incorporate an encoding of more complex functions such as (prior) distribution functions over
(goal) states.4 This generality is afforded by the complete class theorem [8, 82, 13], which says that, for any pair of
reward functions (or preferences) and choice behavior, there exist some prior beliefs that render the choices Bayes
optimal. Understanding the theoretical backing of the complete class theorem means that our ANGC framework,
despite the fact that it commits to a particular form of neural processing (to provide a concrete implementation for
simulation), could be written down in terms of Bayesian decision processes even though the form we present does
not explicitly do so. In Equation 3, we further highlight our active inference formulation connects nicely with the
recently popular use of extrinsic versus intrinsic reward values to facilitate “curiosity-driven learning” [53, 9].

As indicated by the architecture diagram in Figure 2b, the implementation of our ANGC agent in this paper is a
coupling of two NGC circuits – the generator (or dynamic generative model), which is responsible for producing
the epistemic term rept , and the controller, which is responsible for choosing the actions such that the full reward rt,
which includes the instrumental term rint , is maximized.

The NGC Generator Once the generator’s top-most latent state is clamped to the the current D-dimensional
observation ot ∈ RD×1 and the 1-of-A encoding of the controller’s currently chosen action at (out of A possible
actions), i.e., at ∈ {0, 1}A×1, the generator attempts to predict the value of the next observation of the environment
ot+1. Using the routine INFERSTATES defined in Algorithm 1, the generator, with parameters Θg, searches for
a good set of latent state activities to explain output xo = ot+1 given input xi = [at,ot+1] where [·, ·] is to
indicate the vector concatenation of ot and at. Once latent activities have been found, the generator then updates
its synapses via routine UPDATEWEIGHTS in Algorithm 1.

The generator plays in an important role for driving the exploration conducted by an ANGC agent. Specifically,
as the generator progressively learns to how to synthesize future observations, the current activities of the error
neurons embedded at each layer, i.e., E = {e0, e1, · · · , eL}, are used to produce an epistemic modulation term.
Formally, this means that the exploration signal is calculated as ret =

∑
` ||e`||22 which we observe is the result of

summing across layers as well as across each error neuron vector’s respective dimensions.5 The epistemic term
rept = αer

e
t is then combined with an instrumental term rint = αir

i
t, i.e., the scalar signal produced externally (by

the environment or by another neural system), to guide the agent towards a goal state(s), according to Equation 3.
The final value rt is then subsequently used to adapt the controller described in the following sub-section.

The NGC Controller With its top-most latent state clamped to the tth observation, i.e., xi = ot, the controller,
with parameters Θc, will generate a prediction of the full reward signal rt. Specifically, at any step in time, given a
target scalar value (produced by the environment and the generator), the controller will also infer a suitable set of
latent activities using the INFERSTATES routine defined in Algorithm 1.

Since the NGC controller’s output layer will estimate a potential reward signal for each possible discrete action that
the agent could take (which is typical in many modern Q-learning setups), we must first compose the target activity
tt for the output nodes once the scalar value rt is obtained. This is done by first encoding the action as a 1-of-A
vector at (this is done by the TOONEHOT function call in Algorithm 2), computing the boot-strap estimate of the

4If rewards are viewed as log priors, i.e., p(o) ∝ exp(r(o)) [20], then other choices of p(o) are possible.
5Observe that this term is also proportional to the generator’s total discrepancy, i.e., ret =

∑
` ||e

`||22 ∝ L(Θg).

5

Preprint, Work in Progress

Algorithm 2 The ANGC total discrepancy process under an environment for E episodes (of maximum length T).

Input: environment S, controller Θc, generator Θg , deque memoryM, E, T , αe, αi, εdecay , ε, and γ
function SIMULATEPROCESS(S, E, T,Θc,Θg,M, αe, αi, ε, εdecay)

rimax = 1
for e = 1 to E do

ot ← o0 from S . Get initial state/observation from environment
for t = 1 to T do

// Sample action at according to an ε-greedy policy
dt = PROJECT(ot,Θc), p ∼ U(0, 1)(
p < ε→ at ∼ Ud(1, A)

)
∧
(
p ≥ ε→ at = arg maxa dt

)
, at = TOONEHOT(at)

// Get next state/observation from environment & compute component reward signals
(ret ,ot+1)← S(at), (Λ, E) = INFERSTATES([at,ot],ot+1,Θg)

rit =
∑
` ||E [`]||22, rimax = max(rit, r

i
max), rit ←

rit
rimax

, rt = αer
e
t + αir

i
t

// Store transition and update weights from samples in memory
Store (ot, at, rt,ot+1) inM
(oj , aj , rj ,oj+1) ∼M . Sample mini-batch of transitions from memory

tj =

{
rj if oj is terminal
rj + γmaxa PROJECT(oj+1,Θc) otherwise

aj = TOONEHOT(aj), tj = tjaj + (1− aj)⊗ PROJECT(oj ,Θc)
// Update controller Θc

(Λc, Ec) = INFERSTATES(oj , tj ,Θc), Θc ← UPDATEWEIGHTS(Λc, Ec,Θc)
// Update generator Θg

(Λg, Eg) = INFERSTATES([aj ,oj],oj+1,Θg), Θg ← UPDATEWEIGHTS(Λg, Eg,Θg)

ε← max(0.05, ε ∗ εdecay)

future discounted reward dt+1 = PROJECT(ot+1,Θc), and finally checking if the next observation is a terminal.
Specifically, the target vector is computed according to the following equation:

tt = ttat + (1− at)⊗ PROJECT(ot,Θc) (4)
where the target scalar tt is created according to the following logical expression:

(ot is terminal→ tt = rt) ∧ (ot is not terminal→ tt = rt + γmax
a

PROJECT(ot+1,Θc)). (5)
Once tt has been prepared, we may run the controller to find its latent activities for ot and tt using INFERSTATES
and calculate the local weight updates via the UPDATEWEIGHTS routine (from Algorithm 1). Furthermore, observe
that the second sub-expression in Equation 5 involves re-using the controller to estimate the (reward) value of the
future observation/state, i.e., the γmaxa PROJECT(ot+1,Θc) term. This specific term could then be replaced with
a proxy term γmaxa PROJECT(ot+1, Θ̂c) to implement the target network stability mechanism proposed in [39],
where Θ̂c are the parameters of a “target controller” that are initialized to be the values of Θc at the start of the
simulation and only ever updated every C transitions by Polyak averaging Θ̂c = τcΘc + (1− τc)Θ̂c.

The ANGC Agent: Putting It All Together At a high level, the proposed ANGC framework prescribes the
joint interaction of the controller and generator modules describe above. At each time step, the agent, given
observation/state ot ∈ RD×1 (which could contain continuous or discrete variables), is to perform a discrete action
at

6 and receive from its environment the result of its action, i.e., observation ot+1 and possibly an external reward
signal rept . The controller is responsible for deciding which action to take next while the generator actively attempts
to guess the (next) state of the agent’s environment. Upon taking an action at, the generator’s prediction is corrected
using the values of the sensory sample drawn from the environment, allowing it iteratively craft a compressed
internal impression of the agent’s world. The inability of the generator to accurately predict the incoming sensory
sample ot+1 will be used to guide the agent to explore its environment in a fashion that ultimately reduces its
(long-term) surprisal and thus improve the controller’s ability to extract an effective policy/plan to achieve a goal.

The complete ANGC agent is specified in Algorithm 27 and graphically depicted in Figure 2b. Note that Algorithm
2 implements the the full simulation of the agent’s inference and synaptic adjustment over an E-episode long

6We focus on discrete actions in this study and leave generalization to continuous actions for future work.
7Note that E [`] means retrieve the `th item in E .

6

Preprint, Work in Progress

Table 1: For each control task, below are the meta-parameter configurations used for the ANGC agents.
Cartpole Mountain Car Lunar Lander

Controller Generator Controller Generator Controller Generator
φ(·) ReLU ReLU ReLU6 ReLU6 ReLU6 ReLU6
Lat Dim [256, 128] [256, 128] [128, 128] [128, 128] [512, 256] [128, 128]
Rule RMSprop Adam Adam Adam Adam Adam
η 0.0005 0.001 0.001 0.001 0.001 0.001
εdecay 0.97 – 0.95 – 0.995 –
C 100 – 200 – 200 –
γ 0.99 – 0.99 – 0.99 –
Nmem 106 106 500, 000 500, 000 500, 000 500, 000
Nbatch 256 256 128 128 256 256

stream (where each episode is at most T steps long – note that T can vary with time as in the case of episode
streams). In addition to the target controller modification described in the last sub-section, we also integrate a
simple form of experience replay memoryM [56, 39] (implemented as a ring buffer where mini-batches used for
training are created by sampling stored transitions uniformly at random). This stabilizes the learning process by
removing correlations in the observation sequence encountered by the ANGC agent.

3 Experiments

The performance of our proposed ANGC agent is evaluated on three classical control problems commonly used in
reinforcement learning (RL). Specifically, we compare our ANGC to a random agent (where actions are taken at
each step in time uniformly at random) and a deep Q-network (DQN) [39] on: 1) the inverted pendulum (cartpole)
problem, 2) the mountain car problem, and 3) the lunar lander problem.

3.1 Control Tasks

The Inverted Pendulum Problem: In the inverted pendulum problem, also known as the cart-pole problem, the
goal is to keep a pole balanced upright atop a movable cart. The state space of this problem is summarized in a 4-D
vector ot comprised of four values – cart position, cart velocity, the angle θ of the pole, and the angular velocity.
The agent can choose between two discrete actions – move the cart to the left (with a fixed force value) or move the
cart to the right. The reward function for this problem yields a value of 1.0 for every time step that the episode
does not end (maximum T = 500). An episode ends when the angle of the pole is more than 15◦ from vertical or
when the base of the cart moves than 2.4 units from the center of the problem space. This task is considered solved
when an agent obtains an average cumulative reward of 475.0 over the past 100 episodes.

The Mountain Car Problem: In this problem [43], a car is located at the bottom of a (1-D) valley and the
agent’s goal is to drive the car and park at the top of the hill (to the right). The target location is marked by a
flag-post at the x-coordinate value 0.5. The state space is a 2-D vector comprised of two values – the position of the
car (along the x-axis) and the car’s velocity. The agent chooses one of three discrete actions – accelerate the car to
the left, accelerate the car to the right, or do nothing. A reward of −1.0 is given to the agent for every step that the
episode does not end (maximum T = 200) – this encourages agents to find a way to the hilltop quickly. This task
is considered solved when an agent obtains an average of −110.0 cumulative reward over the past 100 episodes.

The Lunar Lander Problem: In the lunar lander problem, an agent is tasked with landing a rocket onto a
landing pad located at the (2-D) coordinate (0, 0). The state space for this problem is an 8-D vector. The agent can
choose between four possible discrete actions – fire the left engine, fire the right engine, fire the rocket upwards, or
do nothing. The agent receives a reward of 100 for landing on the pad, 10 points for each of the rocket legs that are
standing, and −0.3 for every time step the rocket’s engines are firing. This task is considered solved when an agent
obtains an average of 200.0 cumulative reward over the past 100 episodes.

3.2 Training Setup

ANGC Agent Setup: For all of the ANGC agents across all trials, we used fixed configurations of meta-
parameters for each control task. In Table 1, we present several of the key values chosen (based on preliminary
experimentation) for the meta-parameters of each of the two sub-models of the agent, i.e., the controller (Controller)
and the generative model (Generator). Initial synaptic weight values for both were initialized by sampling a

7

Preprint, Work in Progress

(a) Inverted pendulum (cart-pole). (b) Mountain car. (c) Lunar lander.

Figure 3: Reward curves for ANGC, the DQN, and random baselines. Mean and standard deviation over 10 trials
have been plotted. Dash-dotted, horizontal (gray) lines depict the threshold for problem solution.

centered Gaussian with standard deviation of 0.025. In the table, “Lat Dim” refers to the number of neurons in
each latent layer of the model, e.g., [128, 128] means two internal layers of 128 neurons were used, and “Rule”
refers to the choice of the weight update rule used, such as RMSprop [76] or Adam [30].

For all ANGC agents, αe = αi = 1.0 was use to set the importance factors of both the epistemic and instrumental
signals. Both the controller and generative model of each agent was trained using a single, shared experience
replay buffer with a maximum capacity of Nmem transitions from which mini-batches of Nbatch transition samples
were sampled in order to compute parameter updates at any single time-step of each simulation. Each agent
made use of an epsilon(ε)-greedy policy where ε was decayed at the end of each episode according to the rule:
ε← min(0.05, ε ∗ εdecay) (starting ε = 1 at the very start of each trial).

DQN Agent Setup: For the DQN agents, we initially start with 90% exploration and 10% exploitation (ε = 0.9)
and eventually begin decaying until the condition of 10% exploration is reached, i.e., 90% exploitation (ε = 0.1).
A discount factor of γ = 0.99 was used for all DQNs. The linear rectifier was used as the activation function and
Adam was used to update the weight values, which each W ` was initialized according to a centered Gaussian
scaled by

√
2.0/(J`−1 + J`). The replay buffer size, the global learning rate, the hidden dimensions, and number

of layers were tuned – hidden layer sizes were selected from within the range of [32, 256] and the number of layers
was chosen from within the range of [1, 3].

3.3 Results

In Figure 3, we visualize the accumulated reward as a function of the episode count, smoothing out the curves by
plotting the moving average reward as a function of the episode count, i.e., µt = 0.1rt + 0.9µt−1 . Results are
averaged over 10 trials and the plots present both the trial mean (darker color central curve) and standard deviation
(lighter color envelope). In each plot, a dash-dotted horizontal indicates the threshold for fully solving each task.

It is immediately apparent from our reward plots, across all three control benchmarks, that the ANGC agent is not
only competitive with backprop-based, deep Q-learning but it is able to learn a good policy from the simulated
episodes far earlier. This highlights the value of our ANGC framework for designing agents – the sample efficiency
improves for each of the benchmarks we investigate given that far fewer episodes are required by the ANGC agents
to generalize well and even ultimately formally solve the control problem (as indicated by their ability to reach
each problem’s solution threshold).

8

Preprint, Work in Progress

Crucially, observe that the ANGC agent is capable of effectively tackling control problems involving extremely
sparse rewards (or nearly non-existent reward signals) as indicated by its early strong performance on the mountain
car problem, which is arguably the hardest of the problems examined in this study. The ANGC’s effectiveness
on this problem is, we argue, largely due to its own internally generated epistemic modulation factor rept . In
other words, the ANGC agent is driven to explore states that surprise it most, meaning it is most “curious” about
states that yield the highest magnitude total discrepancy (or, indirectly, the greatest free energy). This feature
presents a clean, neural generative coding implementation of the epistemic/surprisal term key to the active inference
framework [21] which theoretically is meant to encourage a more principled and efficient form of environmental
exploration. Furthermore, this term, much akin to the intrinsic reward produced in curiosity-driven models [58],
allows the agent to operate in settings where there even exists no obvious, external reward (or instrumental term).

While our ANGC agent results are promising, integrating additional mechanisms typically used in deep RL would
be a fruitful next step. Since our agent framework has already proven to be compatible with commonly-used RL
heuristics such as experience replay and target network stability, integrating other heuristics would help to further
improve performance.

3.4 Discussion

First and foremost, the fundamental building blocks of our ANGC agent align with the plethora of predictive
processing computational models that have been proposed to explain brain function [59, 14, 4]. This provides a
desirable grounding of our model in computational cognitive neuroscience by connecting it to a prominent Bayesian
brain theory as well as with established general principles of neurophysiology (for example, it combines diffuse
inhibitory feedback connections with driving feedforward excitatory connections). In addition, the synaptic weight
adjustments computed in our framework are local, corresponding to, if we include the factor 1/2βe (and ideally
replace it with the learnable precision matrix of [48], a three-factor (error) Hebbian update rule. While there are
many elements of our NGC building block that preclude it from serving as a complete and proper computational
model of actual neural circuitry, e.g., synapses are currently allowed to be negative and positive, neurons are
communicating with real-values instead of spikes [81], etc., it represents a step forward towards a computational
framework that facilitates a scalable simulation of neuro-biologically plausible computation that generalizes
well on complicated statistical learning problems. We also note that our implementation further makes several
design choices for the sake of computational speed and therefore only represents one possible implementation of
predictive processing generalized for action-driven adaptation to dynamic environments. However, despite these
limitations, our ANGC framework offers a promising path towards viable neural agents that learn without backprop,
no longer subject to the algorithm’s particular constraints [5]. Practically, one could leverage the parallelism
afforded by high performance computing to potentially simulate very large, non-differentiable neural circuits
given that our NGC modules offer natural layer-wise parallel calculations and do not suffer from the forward and
backward-locking problems that plague backprop [29]. Furthermore, our ANGC contributes to the effort to create
more biologically-motivated models and update rules either based on or for reinforcement learning [37, 1, 86] and
motor control.

Second, key to our overall ANGC agent design is the notion of novelty or surprise [3], which is what provides our
neural system with a means to explore an environment beyond a uniform random sampling scheme. This connects
our ANGC framework to the family of RL models that have been designed to generate intrinsic reward signals
[65, 73, 70, 54], which are inspired by the psychological concept of curiosity inherent to human agents [63, 69].
Crucially, curiosity provides an agent with the means to acquire new skills that might prove useful for maximizing
rewards in downstream tasks – as a result, one could view the total discrepancy signal produced by the ANGC’s
generator (to create rept) as one potential source of “curiosity” that drives the agent, even in the presence of nearly
no external reward signals (as was the case in our mountain car experiment). Note that there are many other forms
of intrinsic reward signals such as those based on policy-entropy [60, 25], information gain [28, 67], prediction
error [58, 10], state entropy [33], state uncertainty [55], and empowerment [34, 40]. Since our agent employs and
adapts a dynamic generative model to produce the necessary signals to drive its curiosity, our agent also contributes
to the work in improving model-based RL through the use of world models [24, 45, 11, 26]. However, world
models in modern-day, model-based RL are learned with backprop whereas our ANGC agent uses the same parallel
neural processing and gradient-free weight updating as the controller, further obviating the need for learning the
entire system in pieces or using evolution to learn an action model [24]. Notably, generative world models could be
useful when integrated into powerful planning algorithms [61, 84]. Extending and using our ANGC’s generator for
long-term planning will be the subject of future work.

Finally, our ANGC agent framework offers a simple predictive processing interpretation of active inference and the
more general, theoretical planning-as-inference. Planning-as-inference (PAI) [7] broadly encapsulates the view that

9

Preprint, Work in Progress

a decision-making agent utilizes an internal cognitive model that represents the agent’s future as the joint probability
distribution over actions, (outcome) states, and rewards. Active inference [21], which is a particular instantiation of
PAI, suggests that agents select actions such that they maximise the evidence for an internal model that is also
biased towards the agent’s preferences. In Equation 3, we took advantage of the complete class theorem [8] to
develop a simple weighted sum of the two signals central to the general active inference optimization objective –
an instrumental term (which drives the agent towards a goal or preferred state of the world) and an epistemic term
(which drives the agent to search through its environment by attending to states that surprise it the most). While we
focus on scalar signals, which would likely be components of the error function that is embodied in the firing rates
of dopamine neurons [42, 41, 66], one could instead use encodings of goal states, priors, or other functions that
could facilitate more complex behavior and longer-term planning in an ANGC agent. Neural process theory has
also been developed for active inference [17, 57] which could be used to further modify our framework towards
greater neurobiological plausibility.

4 Conclusion

In this paper, we proposed active neural generative coding (ANGC), a framework for learning goal-directed agents
without backpropagation of errors. We demonstrated on three control problems in reinforcement learning the
effectiveness of our agent framework for learning models that are competitive with popular backprop-based ones,
such as the deep Q-network. Notably, our framework demonstrates the value of leveraging the neuro-biologically
grounded learning and inference mechanisms of neural generative coding to dynamically adapt a generative
model that provides intrinsic signals (based on total discrepancy) to augment problem-specific extrinsic rewards.
Furthermore, given its better sample efficiency as demonstrated by our experiments, the ANGC framework could
prove useful in more complex environments, offering an important means of implementing planning-as-inference.

References

[1] ALEXANDER, W. H., AND BROWN, J. W. Frontal cortex function as derived from hierarchical predictive
coding. Scientific reports 8, 1 (2018), 1–11.

[2] ARULKUMARAN, K., DEISENROTH, M. P., BRUNDAGE, M., AND BHARATH, A. A. A brief survey of
deep reinforcement learning. arXiv preprint arXiv:1708.05866 (2017).

[3] BARTO, A., MIROLLI, M., AND BALDASSARRE, G. Novelty or surprise? Frontiers in psychology 4 (2013),
907.

[4] BASTOS, A. M., USREY, W. M., ADAMS, R. A., MANGUN, G. R., FRIES, P., AND FRISTON, K. J.
Canonical microcircuits for predictive coding. Neuron 76, 4 (2012), 695–711.

[5] BENGIO, Y., LEE, D.-H., BORNSCHEIN, J., MESNARD, T., AND LIN, Z. Towards biologically plausible
deep learning. arXiv preprint arXiv:1502.04156 (2015).

[6] BERLYNE, D. E. Curiosity and exploration. Science 153, 3731 (1966), 25–33.

[7] BOTVINICK, M., AND TOUSSAINT, M. Planning as inference. Trends in cognitive sciences 16, 10 (2012),
485–488.

[8] BROWN, L. D. A complete class theorem for statistical problems with finite sample spaces. The Annals of
Statistics (1981), 1289–1300.

[9] BURDA, Y., EDWARDS, H., PATHAK, D., STORKEY, A., DARRELL, T., AND EFROS, A. A. Large-scale
study of curiosity-driven learning. arXiv preprint arXiv:1808.04355 (2018).

[10] BURDA, Y., EDWARDS, H., STORKEY, A., AND KLIMOV, O. Exploration by random network distillation.
arXiv preprint arXiv:1810.12894 (2018).

[11] CHUA, K., CALANDRA, R., MCALLISTER, R., AND LEVINE, S. Deep reinforcement learning in a handful
of trials using probabilistic dynamics models. arXiv preprint arXiv:1805.12114 (2018).

[12] CLARK, A. Surfing uncertainty: Prediction, action, and the embodied mind. Oxford University Press, 2015.

[13] DAUNIZEAU, J., DEN OUDEN, H. E., PESSIGLIONE, M., KIEBEL, S. J., STEPHAN, K. E., AND FRISTON,
K. J. Observing the observer (i): meta-bayesian models of learning and decision-making. PloS one 5, 12
(2010), e15554.

[14] FRISTON, K. A theory of cortical responses. Philosophical transactions of the Royal Society B: Biological
sciences 360, 1456 (2005), 815–836.

10

Preprint, Work in Progress

[15] FRISTON, K. The free-energy principle: a rough guide to the brain? Trends in cognitive sciences 13, 7
(2009), 293–301.

[16] FRISTON, K., FITZGERALD, T., RIGOLI, F., SCHWARTENBECK, P., AND PEZZULO, G. Active inference:
a process theory. Neural computation 29, 1 (2017), 1–49.

[17] FRISTON, K., AND KIEBEL, S. Predictive coding under the free-energy principle. Philosophical Transactions
of the Royal Society B: Biological Sciences 364, 1521 (2009), 1211–1221.

[18] FRISTON, K., MATTOUT, J., AND KILNER, J. Action understanding and active inference. Biological
cybernetics 104, 1 (2011), 137–160.

[19] FRISTON, K., RIGOLI, F., OGNIBENE, D., MATHYS, C., FITZGERALD, T., AND PEZZULO, G. Active
inference and epistemic value. Cognitive neuroscience 6, 4 (2015), 187–214.

[20] FRISTON, K., SAMOTHRAKIS, S., AND MONTAGUE, R. Active inference and agency: optimal control
without cost functions. Biological cybernetics 106, 8 (2012), 523–541.

[21] FRISTON, K. J., LIN, M., FRITH, C. D., PEZZULO, G., HOBSON, J. A., AND ONDOBAKA, S. Active
inference, curiosity and insight. Neural computation 29, 10 (2017), 2633–2683.

[22] FRISTON, K. J., ROSCH, R., PARR, T., PRICE, C., AND BOWMAN, H. Deep temporal models and active
inference. Neuroscience & Biobehavioral Reviews 90 (2018), 486–501.

[23] GUERGUIEV, J., LILLICRAP, T. P., AND RICHARDS, B. A. Towards deep learning with segregated dendrites.
ELife 6 (2017), e22901.

[24] HA, D., AND SCHMIDHUBER, J. Recurrent world models facilitate policy evolution. arXiv preprint
arXiv:1809.01999 (2018).

[25] HAARNOJA, T., ZHOU, A., ABBEEL, P., AND LEVINE, S. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International Conference on Machine Learning (2018),
PMLR, pp. 1861–1870.

[26] HAFNER, D., LILLICRAP, T., FISCHER, I., VILLEGAS, R., HA, D., LEE, H., AND DAVIDSON, J. Learning
latent dynamics for planning from pixels. In International Conference on Machine Learning (2019), PMLR,
pp. 2555–2565.

[27] HEIDRICH-MEISNER, V., AND IGEL, C. Neuroevolution strategies for episodic reinforcement learning.
Journal of Algorithms 64, 4 (2009), 152–168. Special Issue: Reinforcement Learning.

[28] HOUTHOOFT, R., CHEN, X., DUAN, Y., SCHULMAN, J., DE TURCK, F., AND ABBEEL, P. Vime:
Variational information maximizing exploration. arXiv preprint arXiv:1605.09674 (2016).

[29] JADERBERG, M., CZARNECKI, W. M., OSINDERO, S., VINYALS, O., GRAVES, A., SILVER, D., AND
KAVUKCUOGLU, K. Decoupled neural interfaces using synthetic gradients. In International Conference on
Machine Learning (2017), PMLR, pp. 1627–1635.

[30] KINGMA, D. P., AND BA, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
(2014).

[31] LAKE, B. M., ULLMAN, T. D., TENENBAUM, J. B., AND GERSHMAN, S. J. Building machines that learn
and think like people. Behavioral and brain sciences 40 (2017).

[32] LEE, D.-H., ZHANG, S., FISCHER, A., AND BENGIO, Y. Difference target propagation. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases (2015), Springer, pp. 498–515.

[33] LEE, L., EYSENBACH, B., PARISOTTO, E., XING, E., LEVINE, S., AND SALAKHUTDINOV, R. Efficient
exploration via state marginal matching. arXiv preprint arXiv:1906.05274 (2019).

[34] LEIBFRIED, F., PASCUAL-DIAZ, S., AND GRAU-MOYA, J. A unified bellman optimality principle combining
reward maximization and empowerment. arXiv preprint arXiv:1907.12392 (2019).

[35] LILLICRAP, T. P., COWNDEN, D., TWEED, D. B., AND AKERMAN, C. J. Random synaptic feedback
weights support error backpropagation for deep learning. Nature communications 7 (2016), 13276.

[36] MANCHEV, N., AND SPRATLING, M. W. Target propagation in recurrent neural networks. Journal of
Machine Learning Research 21, 7 (2020), 1–33.

[37] MAZZONI, P., ANDERSEN, R. A., AND JORDAN, M. I. A more biologically plausible learning rule for
neural networks. Proceedings of the National Academy of Sciences 88, 10 (1991), 4433–4437.

[38] MNIH, V., KAVUKCUOGLU, K., SILVER, D., GRAVES, A., ANTONOGLOU, I., WIERSTRA, D., AND
RIEDMILLER, M. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

11

Preprint, Work in Progress

[39] MNIH, V., KAVUKCUOGLU, K., SILVER, D., RUSU, A. A., VENESS, J., BELLEMARE, M. G., GRAVES,
A., RIEDMILLER, M., FIDJELAND, A. K., OSTROVSKI, G., ET AL. Human-level control through deep
reinforcement learning. nature 518, 7540 (2015), 529–533.

[40] MOHAMED, S., AND REZENDE, D. J. Variational information maximisation for intrinsically motivated
reinforcement learning. arXiv preprint arXiv:1509.08731 (2015).

[41] MONTAGUE, P. R., DAYAN, P., AND SEJNOWSKI, T. J. A framework for mesencephalic dopamine systems
based on predictive hebbian learning. Journal of neuroscience 16, 5 (1996), 1936–1947.

[42] MONTAGUE, P. R., AND SEJNOWSKI, T. J. The predictive brain: temporal coincidence and temporal order
in synaptic learning mechanisms. Learning & Memory 1, 1 (1994), 1–33.

[43] MOORE, A. W. Variable resolution dynamic programming: Efficiently learning action maps in multivariate
real-valued state-spaces. In Machine Learning Proceedings 1991. Elsevier, 1991, pp. 333–337.

[44] MOVELLAN, J. R. Contrastive hebbian learning in the continuous hopfield model. In Connectionist Models.
Elsevier, 1991, pp. 10–17.

[45] NAGABANDI, A., KAHN, G., FEARING, R. S., AND LEVINE, S. Neural network dynamics for model-based
deep reinforcement learning with model-free fine-tuning. In 2018 IEEE International Conference on Robotics
and Automation (ICRA) (2018), IEEE, pp. 7559–7566.

[46] NIV, Y. Reinforcement learning in the brain. Journal of Mathematical Psychology 53, 3 (2009), 139–154.

[47] O’REILLY, R. C. Biologically plausible error-driven learning using local activation differences: The
generalized recirculation algorithm. Neural computation 8, 5 (1996), 895–938.

[48] ORORBIA, A., AND KIFER, D. The neural coding framework for learning generative models. arXiv preprint
arXiv:2012.03405 (2020).

[49] ORORBIA, A., MALI, A., GILES, C. L., AND KIFER, D. Continual learning of recurrent neural networks by
locally aligning distributed representations. IEEE Transactions on Neural Networks and Learning Systems
(2020).

[50] ORORBIA, A., MALI, A., KIFER, D., AND GILES, C. L. Large-scale gradient-free deep learning with
recursive local representation alignment. arXiv e-prints (2020), arXiv–2002.

[51] ORORBIA, A. G., HAFFNER, P., REITTER, D., AND GILES, C. L. Learning to adapt by minimizing
discrepancy. arXiv preprint arXiv:1711.11542 (2017).

[52] ORORBIA, A. G., AND MALI, A. Biologically motivated algorithms for propagating local target representa-
tions. In Proceedings of the AAAI Conference on Artificial Intelligence (2019), vol. 33, pp. 4651–4658.

[53] OUDEYER, P.-Y. Computational theories of curiosity-driven learning. arXiv preprint arXiv:1802.10546
(2018).

[54] OUDEYER, P.-Y., AND KAPLAN, F. What is intrinsic motivation? a typology of computational approaches.
Frontiers in neurorobotics 1 (2009), 6.

[55] O’DONOGHUE, B., OSBAND, I., MUNOS, R., AND MNIH, V. The uncertainty bellman equation and
exploration. In International Conference on Machine Learning (2018), pp. 3836–3845.

[56] O’NEILL, J., PLEYDELL-BOUVERIE, B., DUPRET, D., AND CSICSVARI, J. Play it again: reactivation of
waking experience and memory. Trends in neurosciences 33, 5 (2010), 220–229.

[57] PARR, T., AND FRISTON, K. J. The active construction of the visual world. Neuropsychologia 104 (2017),
92–101.

[58] PATHAK, D., AGRAWAL, P., EFROS, A. A., AND DARRELL, T. Curiosity-driven exploration by self-
supervised prediction. In International Conference on Machine Learning (2017), PMLR, pp. 2778–2787.

[59] RAO, R. P., AND BALLARD, D. H. Predictive coding in the visual cortex: a functional interpretation of some
extra-classical receptive-field effects. Nature neuroscience 2, 1 (1999).

[60] RAWLIK, K. C. On probabilistic inference approaches to stochastic optimal control. PhD thesis, The
University of Edinburgh, 2013. Edinburgh, Scotland.

[61] RUBINSTEIN, R. Y. Optimization of computer simulation models with rare events. European Journal of
Operational Research 99, 1 (1997), 89–112.

[62] RUMELHART, D. E., HINTON, G. E., AND WILLIAMS, R. J. Learning representations by back-propagating
errors. Nature 323, 6088 (1986), 533–536.

12

Preprint, Work in Progress

[63] RYAN, R. M., AND DECI, E. L. Intrinsic and extrinsic motivations: Classic definitions and new directions.
Contemporary educational psychology 25, 1 (2000), 54–67.

[64] SCELLIER, B., AND BENGIO, Y. Equilibrium propagation: Bridging the gap between energy-based models
and backpropagation. Frontiers in computational neuroscience 11 (2017), 24.

[65] SCHMIDHUBER, J. A possibility for implementing curiosity and boredom in model-building neural controllers.
In Proc. of the international conference on simulation of adaptive behavior: From animals to animats (1991),
pp. 222–227.

[66] SCHULTZ, W., DAYAN, P., AND MONTAGUE, P. R. A neural substrate of prediction and reward. Science
275, 5306 (1997), 1593–1599.

[67] SHYAM, P., JAŚKOWSKI, W., AND GOMEZ, F. Model-based active exploration. In International Conference
on Machine Learning (2019), PMLR, pp. 5779–5788.

[68] SILVER, D., HUBERT, T., SCHRITTWIESER, J., ANTONOGLOU, I., LAI, M., GUEZ, A., LANCTOT, M.,
SIFRE, L., KUMARAN, D., GRAEPEL, T., ET AL. A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science 362, 6419 (2018), 1140–1144.

[69] SILVIA, P. J. Curiosity and motivation. The Oxford handbook of human motivation (2012), 157–166.

[70] SINGH, S. P., BARTO, A. G., AND CHENTANEZ, N. Intrinsically motivated reinforcement learning. In NIPS
(2004).

[71] SOLWAY, A., AND BOTVINICK, M. M. Goal-directed decision making as probabilistic inference: a
computational framework and potential neural correlates. Psychological review 119, 1 (2012), 120.

[72] SPIELBERGER, C. D., AND STARR, L. M. Curiosity and exploratory behavior. Motivation: Theory and
research (1994), 221–243.

[73] STORCK, J., HOCHREITER, S., AND SCHMIDHUBER, J. Reinforcement driven information acquisition in
non-deterministic environments. In Proceedings of the international conference on artificial neural networks,
Paris (1995), vol. 2, Citeseer, pp. 159–164.

[74] SUCH, F. P., MADHAVAN, V., CONTI, E., LEHMAN, J., STANLEY, K. O., AND CLUNE, J. Deep
neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for
reinforcement learning. CoRR abs/1712.06567 (2017).

[75] SUTTON, R. S. Integrated architectures for learning, planning, and reacting based on approximating dynamic
programming. In Machine learning proceedings 1990. Elsevier, 1990, pp. 216–224.

[76] TIELEMAN, T., AND HINTON, G. Lecture 6.5—RmsProp: Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural Networks for Machine Learning, 2012.

[77] TSCHANTZ, A., BALTIERI, M., SETH, A. K., AND BUCKLEY, C. L. Scaling active inference. In 2020
International Joint Conference on Neural Networks (IJCNN) (2020), IEEE, pp. 1–8.

[78] TSCHANTZ, A., MILLIDGE, B., SETH, A. K., AND BUCKLEY, C. L. Reinforcement learning through active
inference. arXiv preprint arXiv:2002.12636 (2020).

[79] TSCHANTZ, A., SETH, A. K., AND BUCKLEY, C. L. Learning action-oriented models through active
inference. PLoS computational biology 16, 4 (2020), e1007805.

[80] UELTZHÖFFER, K. Deep active inference. Biological cybernetics 112, 6 (2018), 547–573.

[81] WACONGNE, C., CHANGEUX, J.-P., AND DEHAENE, S. A neuronal model of predictive coding accounting
for the mismatch negativity. Journal of Neuroscience 32, 11 (2012), 3665–3678.

[82] WALD, A. An essentially complete class of admissible decision functions. The Annals of Mathematical
Statistics (1947), 549–555.

[83] WHITTINGTON, J. C., AND BOGACZ, R. An approximation of the error backpropagation algorithm
in a predictive coding network with local hebbian synaptic plasticity. Neural computation 29, 5 (2017),
1229–1262.

[84] WILLIAMS, G., DREWS, P., GOLDFAIN, B., REHG, J. M., AND THEODOROU, E. A. Aggressive driving
with model predictive path integral control. In 2016 IEEE International Conference on Robotics and
Automation (ICRA) (2016), IEEE, pp. 1433–1440.

[85] WISEMAN, S., CHOPRA, S., RANZATO, M., SZLAM, A., SUN, R., CHINTALA, S., AND VASILACHE, N.
Training language models using target-propagation. arXiv preprint arXiv:1702.04770 (2017).

13

Preprint, Work in Progress

[86] YAMAKAWA, H. Attentional reinforcement learning in the brain. New Generation Computing 38, 1 (2020),
49–64.

[87] ZADOR, A. M. A critique of pure learning and what artificial neural networks can learn from animal brains.
Nature communications 10, 1 (2019), 1–7.

14

	Introduction
	Active Neural Generative Coding
	The Neural Generative Coding Circuit
	Generalizing to Active Neural Coding

	Experiments
	Control Tasks
	Training Setup
	Results
	Discussion

	Conclusion

