Cryptocurrency
- At the core, cryptocurrency is an open ledger keeping track of transactions.
- Copy of ledger maintained across the nodes in the network.
- Authenticity:
 - Elliptic curve cryptography to authenticate transactions.
 - Private key to sign the transaction.
 - Public key to verify the transaction.
- Validity:
 - Blockchain to validate transactions.
 - Inputs: Previous unspent transaction.
 - Outputs: New addresses with unspent funds.

Hierarchical Deterministic Wallet
- Hierarchical deterministic wallets help to decrease the risk of online storage and improve the security by just publishing the public keys and keeping private keys offline.
- Separate the generation of public and private key.
- Cold storage decrease the risk of online storage.

Wallet Implementation
- Wallet divided into offline wallet and networked wallet.
- Offline wallet:
 - Capable of generating private and public keys.
 - Sign the unsigned transaction.
- Networked wallet:
 - Capable to monitor for outputs on public keys.
 - Hardened wallet capable of performing transaction.

Wallet
- Cryptocurrency wallets are the software which bridges the gap between users and cryptocurrencies.
- Provide an easy way to transact.
- Key management:
 - Private key generation.
 - Public key derivation.
 - Secure key storage.

Key Generation
- Public key derivation:
 \[P(x, y) = k \cdot G(x, y) \]
 where:
 - \(k \): Private key (large random integer).
 - \(G \): Base point on the curve.
 - \(P \): Public key (point on the curve).
- Child private key generation:
 - \(k_{child} = k_1 \cdot k_2 \).
 - \(P_{child} = k_{child} \cdot G \).
- Child public key generation:
 - \(P_{child} = k \cdot P \).
-

Problems
- Simple device wallets prioritized convenience over security.
- Secure wallets are inconvenient.
- Wallets become a central point of failure which needs frequent backups.
- Storing private and public keys together create security risks.

Future Work:
- Bitcoin Improvement Proposal 39 to generate mnemonics phrase which is a part of seed generation process.
- Shamir Secret Sharing Scheme can be used to split the secret between two or more individuals, and M out of N confirmation needed to authenticate.
- A multisignature transaction requires M out of N signatures to authorize a transaction. Feature to create multisignature transaction will be an improvement in the security of the wallet.

Conclusion:
- In cryptocurrency wallets, there is a trade-off between security and convenience.
- Hierarchical deterministic wallet helps improve security as well as convenience.

Contact
Ankush Arun Kawanpure
Rochester Institute of Technology
aak3988@rit.edu
Phone: 585-747-0326

References

Design and Analysis of Wallets for Selected Cryptocurrencies
Ankush Arun Kawanpure
Advisor: Prof. Stanislaw P. Radziszowski