SOCIAL CLOTHING SAMPLER

Anusha Balusu ab5136@rit.edu

Advisor: Dr. Joe Geigel jmg@cs.rit.edu

Introduction

- A major issue of online shopping is the huge apparel returns due to poor fitting.
- The objective of the project is to develop an application which helps the customers to choose their desired garment and "virtually" try it on their avatar.
- The users will get a 3rd party perspective of how the style would look in different lighting conditions.

Related Work

2D approach

Images of various poses are stored. When a customer stands in front of the virtual mirror, the matching poses are retrieved and mapped onto the body.

3D approach

The mathematical model of the apparel and the body are determined and used to decide the apparel size and analyze fitting.

Methods Used

Garment as Object

- Scanned human body
- Rig to armature
- Modelled garments
- Assign copy of rigged body to rigged cloth
- Align the copy and actual rigged body

Garment as Cloth

- Scanned human body
- Rig to armature
- Modelled garments
- Attach garment as mesh to Unity Cloth and set constraints & colliders
- Set constraints and colliders to mesh

Future Work

- Automate rigging process and add cloth constraints. Add more colliders to effectively handle simulation.
- Add animations to get 360 degree view. Develop more interactive app to examine the fitting.

Discussion

- The main challenge was adding colliders to the cloth. Unity 5 does not handle cloth mesh collisions anymore due to performance issues.
- Another limitation is that only spherical and capsule colliders can be added to the new cloth framework.
- Different body parts have to be identified dynamically and appropriate colliders should be added for better results.

Technologies Used

- Avatar Workbench 263
- Blender 2.77
- Unity 5.5.1f1

Selected References

[2] Project website: https://sites.google.com/a/g.rit.edu/capstone/home