Energy-efficient sensor monitoring

Presenter: Ankith Kodlamogaru – ak5174@cs.rit.edu
Advisor: Dr. Minseok Kwon – jmk@cs.rit.edu

Abstract

- In a decentralized network, a sensing application (server) assigns tasks to available nodes.
- Tasks are assigned to nodes based on whether the node has the sensors to do the tasks.
- Each task-performing sensor has an associated cost with it. The sum of costs of all sensors in a node is equal to the cost of using a node.
- Node assignments are revisited later, but the initial assignment is important to ensure subsequent low costs.
- Different heuristics’ performances vary in terms of computation times and solution cost during initial assignment.

Background

- In [1], Shin et al defines a sensing condition and the system model for sensing.
- A sensing condition defines what sensors need to be used as part of the tasks assigned.
- The sensing condition is given as a conjunctive normal form (CNF) of n clauses, and each clause is a disjunction of m sensors.
- Example - (s_1, s_2, V s_3) (s_4, V s_5) (s_6) is a sensing condition with 3 clauses. Sensors to be covered in the initial assignment are s_1, s_2, s_3, s_4.

Methods

Given a set of nodes, each with a few random sensors with random costs, and a sensing condition, the goal is to find a set of nodes such that all sensors are covered by these nodes and the overall cost associated with the selected nodes is the minimum possible. I implemented and compared three algorithms.

- Simulated Annealing [2]

\[\text{Move if cost of } (\text{current solution}) > \text{cost(neighbors)}. \]

- Best local search

\[\text{Move if cost of } (\text{current solution}) = \text{cost(neighbors)}. \]

- Multiple entry points search

This is the best local search but with different random initial valid solutions.

Results

![Graph showing time and cost comparison](graph.png)

- Simulated Annealing
- Best local search
- Multiple start Cost

<table>
<thead>
<tr>
<th>Number of helpers</th>
<th>Number of sensors</th>
<th>Simulated Annealing Time (in seconds)</th>
<th>Best local search Time (in seconds)</th>
<th>Multiple start Time (in seconds)</th>
<th>Simulated Annealing Cost</th>
<th>Best local search Cost</th>
<th>Multiple start Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
<td>0.0025</td>
<td>0.0084</td>
<td>0.261</td>
<td>5907</td>
<td>5907</td>
<td>5907</td>
</tr>
<tr>
<td>15</td>
<td>25</td>
<td>0.0102</td>
<td>0.0344</td>
<td>0.578</td>
<td>18191</td>
<td>15655</td>
<td>15655</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>0.0175</td>
<td>0.091</td>
<td>2.47</td>
<td>23107</td>
<td>23107</td>
<td>23107</td>
</tr>
<tr>
<td>25</td>
<td>35</td>
<td>0.3344</td>
<td>0.355</td>
<td>5.426</td>
<td>49616</td>
<td>49616</td>
<td>49616</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td>0.0465</td>
<td>0.424</td>
<td>9.027</td>
<td>49466</td>
<td>49466</td>
<td>49466</td>
</tr>
<tr>
<td>35</td>
<td>45</td>
<td>0.0844</td>
<td>1.367</td>
<td>17.065</td>
<td>87944</td>
<td>61195</td>
<td>61195</td>
</tr>
<tr>
<td>40</td>
<td>50</td>
<td>0.0995</td>
<td>1.371</td>
<td>27.964</td>
<td>92173</td>
<td>83252</td>
<td>83252</td>
</tr>
<tr>
<td>45</td>
<td>55</td>
<td>0.2165</td>
<td>2.811</td>
<td>77.47</td>
<td>143741</td>
<td>143741</td>
<td>143741</td>
</tr>
<tr>
<td>50</td>
<td>60</td>
<td>0.2355</td>
<td>5.264</td>
<td>115.881</td>
<td>155533</td>
<td>155533</td>
<td>155533</td>
</tr>
<tr>
<td>55</td>
<td>65</td>
<td>0.5395</td>
<td>10.384</td>
<td>145.622</td>
<td>219203</td>
<td>168645</td>
<td>168645</td>
</tr>
<tr>
<td>60</td>
<td>70</td>
<td>0.5151</td>
<td>10.396</td>
<td>192847</td>
<td>17955</td>
<td>17955</td>
<td>17955</td>
</tr>
</tbody>
</table>

References

Conclusions

- Simulated annealing gives the overall best results in terms of time and cost consistently over varying number of helpers.
- Best local search has times comparable to Simulated Annealing when the helper count is low, but deviates largely when the helper count increases.
- Best local search gives better costs for some tests compared to Simulated Annealing, but this is offset by the time it takes to achieve the results.
- Multiple entry points search gives the best results in terms of costs for all the tests, but it gets beat by the time taken to achieve them.