
Demise of MD5 and SHA-1

Emerging New Hash

SHA-3

part 1

Stanis law Radziszowski
Computer Science
Rochester Institute of Technology
Rochester, New York, USA

March 2011



Abstract

A hash function H : {0, 1}∗ → {0, 1}m produces an m-bit digest of
an arbitrary message, file, or even an entire file system. Typically,
one wants hash functions to be easy to compute, but also
infeasible to invert or to find collisions (pairs of inputs which hash
to the same value). Hash functions are fundamental
cryptographic primitives, and they are used extensively in
authentication, preserving data integrity, digital signatures, and
many other security applications.

Since 2007, the National Institute of Standards and Technology
(NIST) is running a competition to design a new hash function to
be used instead of a very popular but already broken MD5
(Message Digest) and the most used but much troubled SHA-1
(Secure Hash Algorithm). Out of 64 designs submitted in
October 2008, now, in the final round there are 5 hash function
candidates remaining. The new emerging standard, to be dubbed
SHA-3, will be chosen in late 2012 from the current set of 5
finalists: BLAKE, Grøstl, JH, Keccak and Skein.

This talk will contain the background of hashing, the competition,
rounds completed so far, an overview of the finalists and a
prediction by the speaker who will be the winner.

.

2



Hash - simple, powerful idea

anything
(email, program, document, movie, file system ... )

x = y

m∗

H(x) = H(y)

256 bits
(32 bytes, like this ”napisze do ciebie z dalekiej pod” ... no more)

3



Hashes in Practice

Applications of (cryptographic) hashes

• hash then sign

• time-stamping

• data authentication

• checksumming

• PGP email

• shadow passwords

• networking: SSL, SSH, VPN

• signatures: DSA, DSS (FIPS 186)

• MACs, HMAC (FIPS 198)

• PRF, PRNG, diffusers

• stream ciphers

4



The Problem

Design a (cryptographic) hash function

H : {0, 1}∗ → {0, 1}m such that:

• H is preimage resistant, i.e. given z, it is

infeasible to find any x such that H(x) = z

• H is collision resistant, i.e. it is infeasible

to find any pair x and y such that

H(x) = H(y)

• H is resistant to second preimage-, zero

preimage- (H−1(0m)), length extension-,

and other attacks.

• H is fast to compute, uses little memory

• H can operate in the streaming mode

Very LARGE bound on input length can be

given, pick m as small as possible but still

guaranteeing resistance properties

5



Merkle-Damg̊ard iterated hash

x ∈ {0, 1}∗ - input message

M(x) = m1m2 · · ·mt - formatted input

mt - padded, includes as tail |x| in binary

Hi - chaining variables

g - postprocessing function

compress - a ”kind” of OWF

H(x)

H0 = IV ;

for i = 1, 2, . . . , t do

Hi = compress(Hi−1‖mi);

return H(x) = g(Ht);

6



Merkle-Damg̊ard iterated hash

Compression in r simpler rounds

Each mi is ”unfolded” into

message schedule mij, 1 ≤ j ≤ r

Compression from block cipher

Miyaguchi-Preneel compression, Whirlpool [14, 18]

There are 12 other ways to safely embed

cipher into chaining, including designs by

Matyas-Meyer-Oseas and Davies-Meyer

7



Compression types

Chaining/collection type

• narrow pipe (MD) -

”small” state, possibly good enough

• wide pipe (MD) -

large internal state, prevents

multicollision attacks, fixed points

• sponge (MD) - large internal state

permuted after each absorption

• HAIFA (MD) - wide pipe with salt

and bit count so far injected into each

compression, prevents multicollision

attacks, fixed points, herding

• hash tree collection (not MD) -

permits natural parallelization

8



Brief History (SHA-family biased)

• 1990 - MD4, Rivest, m = 128

• 1992 - MD5, Rivest, modified MD4

• 1993 - SHA-0, NIST, MD-like design

• 1995 - SHA-1, FIPS-180-1 m = 160

• 2002 - SHA-2 family, NIST, FIPS-180-2

for m = 256, 384 and 512 bit digests [10]

• 2004-2006 Wang, Yu, Yin, et al. [22-24]

collision attacks on MD5 and SHA-1

• 2007 - NIST calls for new designs [11]

• 2012 - SHA-3 recommended to for use

All above hashes (so far) follow

Merkle-Damg̊ard template.

9



Hashes in Practice

The two most used hash functions

both of Merkle-Damg̊ard type

• MD5, Rivest 1992

128 bit hash, 512 bit blocks

iterating 64-round compression cMD5

cMD5 : {0, 1}640 → {0, 1}128

• SHA-1, NSA/NIST 1995,

created mainly for use in DSA

160 bit hash, 512 bit blocks

iterating 80-round compression cSHA−1

cSHA−1 : {0, 1}672 → {0, 1}160

10



MD5

MD5 round structure [12]
(Wikipedia)

each unit is a 32-bit word

11



MD5 needs MD4

MD4 definition in CRC [13]
collisions found in 1995

12



MD5 as an edit to MD4

MD5 as an edit of MD4 in CRC [13]

MD6 submitted to SHA-3 competition,

but no longer a candidate.

13



SHA-1 in Standards

HMAC

Keyed message authentication codes

key K and pads have 512 bits each

ipad = 3636 ... 36,

opad = 5C5C ... 5C,

HMACK(x) =

SHA-1((K ⊕ opad ‖ SHA-1((K ⊕ ipad) ‖ x)).

DSA and ECDSA

Elliptic Curve

Digital Signature Algorithm

...

s = k−1(SHA-1(x) + mr) (mod q)

...

14



HMAC

[Stallings]

15



SHA-2

FIPS 180-2, 2002

Modes for 224, 256, 384 and 512 bits

each unit is a 32-bit word

one round of SHA-256 compression
(Alan Kaminsky)

16



SHA-2

structure of SHA-2 compression (Alan Kaminsky)

17



Theory needs your help

Theorem

(most of the time - in various scenarios)

Resistant compression implies resistant hash.

Resistant hash implies resistant compression.

Problem

Find a way to study collision resistant

compression using complexity theory.

(more than in CRC Handbook 9.8.2 [13])

Characterize more formally:

”This n-to-m-bit compression needs

essentially 2m/2 tests to find a collision and

essentially 2m effort to find any preimage.”

People do it normally in random oracle model

in probabilistic combinatorics language.

18



Birthday Attack

Counting fishes in a lake, Schnabel 1938 [16]

Theorem (Birthday Paradox)

Random sampling of q elements of the

domain of size m will produce at least one

collision with probability ǫ if

q ≈
√

2m ln
1

1 − ǫ

q ≈ 1.17
√

m for ǫ = 1/2

(m = 365, q = 23)

Among 23 random people at least two of

them have the same birthday with probability

at least 1/2.

19



Birthday Attack

Proof. [19]

The probability of collision ǫ satisfies

1 − ǫ =

(

m − 1

m

) (

m − 2

m

)

· · ·
(

m − q + 1

m

)

=
q−1
∏

i=1

(

1 − i

m

)

≈
q−1
∏

i=1

e
−i
m

= e
∑q−1

i=1
−i
m = e

−q(q−1)
2m .

Hence

−q(q − 1)

2m
≈ ln(1 − ǫ).

After ignoring −1 in −q(q − 1)

the theorem follows.

20



Generic Attack

Sheer power of computing

• 1998, effort 256, DES↓
• 2010, effort 264 is possible

m = 2128, MD5↓
• 2020, effort 280 may be feasible

m = 2160, SHA-1↓
• effort 2112, won’t be feasible for long

Conclusion. Requiring m ≥ 224 for AHS

seems reasonable (224 is the smallest multiple

of 32 which prevents birthday attack well).

Preimage attacks are much more difficult,

MD5 and SHA-1 are still strong.

21



Best potential attacks

Complexity of collision attacks

(Bart Preneel, 2010)

22



Chinese attacks on MD5/SHA-1

Wang, Yu, Yin (1995 - 2004 - 2006)

Probabilistic differential cryptanalysis found

collisions in MD5 and other hashes [22-24].

Collisions for full 80 rounds CAN

be found (still not done) with

280 → 269 → 263

SHA-1 computations.

Attacks on MD5/SHA-x (1996-2007)

• Collisions for MD5 in seconds

• Collisions for SHA-1 likely soon (?)

• SHA-2 not (yet) threatened

• Preimages still almost hopeless

23



Attacks on MD5 (2005, 2008)

Faking X.509 certificates,

chosen prefix collisions -

Stevens, Lenstra, de Weger

For any P, P ′ find S, S′ such that

MD5(P ‖ S) = MD5(P ′ ‖ S′)

Consecutive blocks of suffixes target to

eliminate specific bit differences.

Converging paths

time down, black the same, colors 0-1, two cases

.

24



False Alarm?

CRYPTO-GRAM, March 15, 2005

Bruce Schneier, <http://www.schneier.com>

SHA-1 Broken

SHA-1 has been broken. Not a reduced-round version.

Not a simplified version. The real thing.

Still waiting for the real thing ...

Collision search for SHA-1 using the

distributed platform BOINC at GUT began

August 8, 2007, ... abandoned May 12, 2009

due to lack of progress.

25



Recommendations

• no more MD5

• SHA-1 out by 2010 (NIST call in 2007)

• in each case analyze which type of

resistance is needed, if preimage then

SHA-1 may stay around longer

New hash needed

• Must be resistant to all known attacks

• Secure hashes from modular number

theory are possible, but painfully slow

• Rather one parameterized hash than

several special purpose hashes

• Take constants from math (like fractional

part of 3
√

pi in SHA-2, pi the i-th prime).

DES/SHA-1 constants are a mystery.

26



Block cipher based design?

• Could be massively parallelized,

NONE of the standard hashes can.

• Immune to linear/differential

cryptanalysis, good confusion/diffusion

• Uses better understood components

• Incrementability. Small length-preserving

message changes permit fast hash update.

• For software parallelizability use some tree

result collection (MD6 or Skein).

• Tree-hashing: built-in or an afterthought

mode of operation.

The dilemma of

SEQUENTIAL vs. PARALLELIZABLE

27



PHASH

X

0

W

X

1

W

. . . X

126

W

X

127

W

X

128

W

X

129

W

. . . X

254

W

X

255

W

. . .

C C . . . C C

+

C C . . . C C

+

W

D

C C . . . C C

+

C C . . . C C

+

W

D

. . .

+

W

PHash

Part of the PHASH computation tree
with cipher W , L = 512 and R = 128

(KaminskyR 2008, [7])

28



NIST

SHA-3 Competition

2007-2012

29



SHA-3 acceptability requirements

2007 - call for proposals

2008 - submissions due October 31

• A.1

Free worldwide.

• A.2

Implementable on varied hardware and

software platforms.

• A.3

Must support 224, 256, 384 and 512 bit

digests, and messages of at least up to

264 bits.

30



SHA-3 submission requirements

• B.1 Completely specified, rationale given

for choices made, attack scenarios and

resistance analysis, parameterizable

• B.2 Source in ANSI C

• B.3 Time and space requirements for

hardware and software for 8-, 32- and

64-bit platforms

• B.4 Documentation in English

• B.5 Issued or pending patents

• B.6 Self-evaluation

31



SHA-3 evaluation criteria

• C.1

Security

• C.2

Cost (time and space complexity)

• C.3

Algorithm and implementation

characteristics (flexibility, parameterizable,

easy to parallelize, and ... simplicity)

32



Hash Function Candidate

competition timeline [11]

• 2007, 1-3Q - minimum requirements

• 2008, October 31 - submissions deadline

• 2009, public comments period

2Q - First HFC Conference [26]

Leuven, BE, February 25-28

• 2010, public comments period

3Q - Second HFC Conference [27]

Santa Barbara, CA, August 23-24

4Q - final round begins

• 2011, 4Q - end of public comments

• 2012, 1Q - Final HFC Conference

2Q - select the winner

3Q - draft documents

public comments, tuning up

4Q - SHA-3 proposed to

the Secretary of Commerce

33



SHA-3 Round-2/3 Candidates

November 2010, Round-2, 14 candidates [25]

December 2011, Round-3, 5 finalists [31]

What Who Where∗

BLAKE Aumasson+ CH

BMW Knapskog NO

CubeHash Bernstein IL

ECHO Gilbert+ FR

Fugue Jutla + IBM NY

Grøstl Knudsen+ DK

Hamsi Küçük (f) BE

JH Wu SG

Keccak Daemen+ (m) BE

Luffa Watanabe+ JP

Shabal Misarsky+ FR

SHAvite-3 Dunkelman+ Israel

SIMD Leurent FR

Skein Schneier+ US/UK

∗
main countries/states of the main submitter

34



Hash Function Competition 2011+

• 2011, February, Round-3 NIST Report

Big boss: Bill Burr

Contents boss: John Kelsey

• Race is getting hot!

Subscribe to hash-forum@nist.gov

Email listproc@nist.gov, in the body

subscribe hash-forum ”your name”

• 2011

become an expert in one finalist function

• 2012

become an expert in the winner function

• 2013+

help new SHA-3 to spread around

35



SHA-3 Zoo

Hosted in Austria by

the Graz University of Technology [29]

• It aims to provide an overview of design

and cryptanalysis of all submissions.

• Informal collection of documents, attacks,

papers and opinions on SHA-3 hash

candidates.

• Extensive benchmarking of SHA-3

hardware implementations.

• NIST doesn’t provide anything similar.

36



eBash

Hosted by Daniel Bernstein from

the University of Illinois at Chicago [30]

djb@cr.yp.to

• Part of a large system benchmarking

cryptographic functions.

• By far the most extensive uniform

software benchmarking of all SHA-3

candidates, on many architectures.

• In places questionable taste:
... suppose you want to submit your MD7 software to
eBash, then do the following ...

37



Hints by John Kelsey, NIST, August 2010

Security

• no earth-shaking results

• will be used as KDF, PRF, PRNG

• new Haifa designs with salt, sponges

• do we count papers?

• rebound attacks

• do pseudocollisions matter?

• is there a ”narrow pipe problem”?

• symmetries

• randomness

38



Hints by John Kelsey, NIST

What will matter for the final choice?

First call: security, cost, algorithm

Other factors

• diversity - not all eggs in one basket

• well interpreted number of papers

• 64-bit is becoming a standard

• SHA-3 will compete with SHA-2

• possible AES-chip-like solutions

• dual signatures

• updates to DSA and HMAC

39



Hints by John Kelsey, NIST

Performance (narrow, wide, sponge)

40



Tricky Comparisons

Performance, Daniel Bernstein

area - FPGA slices relative to SHA-2/512

throughput - Gbit/sec relative to SHA-2/512

41



Hash Summaries

The following 14 slides contain summaries of

the Round-2 hash function candidates, in

alphabetical order, as announced by NIST in

the report NISTIR 7620, September 2009

[25]

Status Report on the First Round of the

SHA-3 Cryptographic Hash Algorithm

Competition

Use SHA-3 Zoo website to access the

documentation of all candidates

http://ehash.iaik.tugraz.at/wiki/The SHA-3 Zoo

42



BLAKE

BLAKE is a HAIFA [24] hash algorithm whose compression
function is based on using a keyed permutation in a
Davies-Meyer-like construction [25]. The keyed permutation is
based on the internals of the ChaCha [26] stream cipher,
extended over a large state, and derives its nonlinearity from the
overlap of modular addition and XOR operations. The most
innovative part of BLAKE is its keyed permutation.

BLAKE’s performance is quite good. It has modest memory
requirements and appears to be suitable for a wide range of
platforms.

The most significant cryptanalytic results against BLAKE are
those that attacked the reduced round versions [27, 28] and
appear to pose no threat to the design.

.

43



Blue Midnight Wish (BMW!)

BMW is a wide-pipe Merkle-Damg̊ard hash construction [29] with
an unconventional compression function, where the nonlinearity is
derived from the overlap of modular addition and XOR
operations. The most innovative parts of the design are the
compression function construction and the design of the
permutations; much of the design is novel and unique amongst
the second-round candidates.

BMW has very good performance and appears to be suitable for a
wide range of platforms. It has modest memory requirements.

The most serious cryptanalytic results against BMW are from
impractical pseudo-collision attacks, and practical near-collision
attacks [30]. These results raise questions about the security of
the design.

.

44



CubeHash (5 dimensional cube)

CubeHash is a sponge-like hash algorithm that is based on a fixed
permutation. The permutation is extremely simple and elegant,
using only additions, XORs, and rotations in a fixed and simple
pattern. All nonlinearity in the hash algorithm is derived from the
overlap of modular additions and XOR operations. The novel part
of CubeHash is the fixed permutation.

CubeHash has two tunable parameters, and its original proposed
set of parameters led to extremely poor performance. A
consistent problem in evaluating CubeHash has been uncertainty
about those parameters. The designer has now proposed a set of
parameters (16, 32) which provide very good performance with
the use of SIMD instructions. CubeHash has relatively modest
memory requirements and appears to be suitable for
implementation on a wide range of platforms.

CubeHash has received a large amount of external analysis,
probably due to the simplicity of its design and the flexibility
offered to attackers by the two different tunable parameters. This
made a strong argument in favor of advancing CubeHash to the
next round–it appeared to be the best- understood of the
candidates. The best-known attacks are ... (snip)

Of these, we find the semi-free-start collision and the symmetry
properties to be the most troubling at this time. The CubeHash
submission package identifies these issues and argues that
exploiting these properties, given the large state and relatively
small injection of message data before each permutation, is about
as hard as a brute-force collision search. Relatively simple tweaks
could also remove the symmetry properties from the algorithm.

.

45



Echo

ECHO is a wide-pipe hash algorithm following the HAIFA
construction. Its compression function uses a keyed permutation;
the counter and salt are used as the key, and the message and
chaining value are used as inputs to the permutation. The
permutation is quite novel, using a 2048-bit AES-like permutation
in which the role of the substitution-box (S-box) [36] is played by
a single AES round. The AES S-box provides all nonlinearity in
this hash algorithm. By far the most interesting and unique part
of this hash algorithm is the super-AES keyed permutation.

ECHO has acceptable performance on current high-end platforms,
but requires hardware AES support to achieve impressive
performance. ECHO requires a considerable amount of memory,
but is expected to be otherwise suited for constrained platforms
and hardware implementations.

The only known analytical result is a highly impractical
distinguishing attack on the underlying permutation of a reduced
round (7 out of 8) version of ECHO [37]. This attack appears to
pose no threat to the overall ECHO design. We hope that the
selection of ECHO as a second-round candidate will lead to more
analysis of this unique hash algorithm design.

.

46



Fugue

Fugue is a variant of a sponge construction. Its compression
function is based on a nonlinear shift register, maintaining a large
state (thirty 32-bit words for the 256-bit version). The shift
register incorporates a strengthened variant of the AES round
function; all other operations are linear. Thus, all nonlinearity in
this design is derived from the AES S-box. The most novel part
of this design is the shift-register-based compression function, for
which proofs and bounds on its differential probabilities were
provided.

The performance of Fugue is acceptable, although the efficiency
of current implementations is not particularly impressive. The use
of SIMD instructions could yield better performance, although
how much the performance could be improved is unknown at this
time. Hardware support for AES may also improve its
performance somewhat, but the impact of this will be limited,
because of the use of the variant-AES round function. Fugue also
maintains a large state, which may make it difficult to implement
in constrained platforms.

We are aware of no external analysis of Fugue. We hope that its
selection as a second-round candidate will lead to more analysis of
this interesting hash algorithm.

.

47



Grøstl (austrian bigos)

Grøstl is a wide-pipe Merkle-Damg̊ard hash construction with
post-processing. Its compression function is a novel construction,
involving two AES-like fixed permutations. All nonlinearity in the
design is derived from the AES S-box. The most innovative part
of Grøstl’s design is the compression function construction.

Grøstl’s performance is acceptable, but not especially impressive.
Performance may be increased using hardware AES support,
although the extent of these gains is unknown at this time. It has
modest memory requirements.

The most serious attack on Grøstl is a semi-free-start collision
attack on a reduced round variant that breaks 7 out of 10 rounds
[37]. This attack raises some question about the security margin
of the design.

.

48



Hamsi (anchovy - sardela)

Hamsi is a Merkle-Damg̊ard hash construction with
post-processing to block length-extension attacks. The
compression function is constructed on a fixed permutation; the
message is expanded using an error-detecting code to fill half the
input block to the permutation, with the other half filled by the
hash chaining value. The result is truncated and XORed with the
hash chaining input, which is similar to the method used in
Snefru. The Hamsi fixed permutation is a
substitution-permutation network (SP network) [38], combining a
single 4-bit S-box (taken from Serpent, and implemented using
bit-slicing) with a linear mixing operation. All nonlinearity in the
design is derived from that one S-box. The most innovative part
of this design is the compression function construction; this is
quite different from any other second-round candidate.

Hamsi requires the use of SIMD instructions to achieve acceptable
performance in software. It has modest memory requirements.

The only results on Hamsi of which we are aware at present
demonstrate low algebraic degree in the outputs of the
compression function; whether this has any security implications
for the hash algorithm is unclear.

.

49



JH

JH uses a novel construction, somewhat reminiscent of a sponge
construction, to build a hash algorithm out of a single, large, fixed
permutation. The fixed permutation is an SP network, combining
two 4-bit S-boxes with a set of linear mixing operations and bit
permutations. All nonlinearity in this design is derived from the
S-boxes. The most innovative part of this design is the
compression function construction, which XORs a 512-bit
message block into the left half of the input of the fixed
permutation, and then XORs the same message block into the
right half of the output of the fixed permutation. The design of
the fixed permutation is also new.

JH’s performance is good, and has modest memory requirements.
Unlike most second-round candidates, all output sizes of JH use
the same function, but with different initial hash values and
different amounts of truncation at the end.

The most serious cryptanalytic result on JH is a theoretical
preimage attack on the 512-bit version [39, 40], which is barely
cheaper than a brute force attack. As this attack does not appear
to threaten the design, it does not concern us. However, the
compression function construction of JH is not well-understood,
and the submitter did not provide a great deal of analysis of this
construction.

.

50



Keccak

Keccak follows the sponge construction and uses a large fixed
permutation. The permutation can be seen as an SP-network
with 5-bit wide S-boxes, or as a combination of a linear mixing
operation and a very simple nonlinear mixing operation. The
construction of the permutation is the most innovative part of the
Keccak design.

Keccak performs well on high-end platforms and is expected to
perform well across a wide range of platforms, as well as in
dedicated hardware. The hash algorithm has modest memory
requirements. Unlike most second-round candidates, Keccak uses
a single design for all hash outputs.

The most significant cryptanalytic result on Keccak of which we
are aware are distinguishing attacks against reduced round
versions of the permutation [41]; however, these do not appear to
threaten the security of the hash algorithm.

.

51



Luffa

Luffa is a variant of the sponge construction, using a linear mixing
operation and several fixed 256-bit permutations in place of a
single wider permutation. The fixed permutations are SP
networks, which combine linear mixing operations with a single
4-bit wide S-box, and this S-box provides all nonlinearity in the
design. The most innovative part of Luffa is the sponge
construction.

Luffa provides good performance on high-end platforms and
appears suitable for a wide variety of platforms. Substantial parts
of the design are the same for different output sizes.

The most significant cryptanalytic result on Luffa of which we are
aware is a pseudo-preimage attack on the squeezing steps of
Luffa-384 and Luffa-512 [42]. This is a consequence of the
structure of Luffa (XORing 256-bit permutation results together
to generate an output) and does not appear to lead to a threat to
the security of the hash algorithm.

.

52



Shabal

Shabal is a hash algorithm that is constructed using a novel
chaining mode, which can be seen as a variant of a wide-pipe
Merkle-Damgrd hash construction. Its compression function is
similarly innovative, based on a feedback shift register
construction that combines the several inputs provided by the
chaining mode efficiently. Nonlinearity in Shabal is derived from
the overlap of XOR, modular addition, and bitwise AND
operations. The entire design is very different from any other
second-round candidate and has many new ideas.

Shabal’s performance is good. However, it requires more working
memory than most of the second-round candidates. The same
internal function is used for all output sizes of Shabal.

Several observations regarding Shabal’s compression function
have been published, including powerful distinguishing attacks on
the keyed permutation that forms its core [43, 44]. However, the
attacks have not been claimed to directly threaten the security of
the hash algorithm, and the submitters have modified the security
proof of their chaining mode to require weaker assumptions that
are not invalidated by the attacks. Nonetheless, the distinguishing
attacks remain a concern.

.

53



SHAvite-3

SHAvite-3 is a HAIFA hash algorithm. The compression function
is a keyed permutation that is used in the Davies-Meyer
construction. The keyed permutation is a balanced Feistel
network [45] (for the 256-bit case) or a pair of interwoven
balanced Feistel networks (for the 512-bit case), with the
F-function constructed from the AES round function. All
nonlinearity in the whole construction relies upon the AES S-box.
The most innovative part of the design is the decision to
construct the keyed permutation in this way; however, SHAvite-3
is a conservative design, with relatively little new about it.

SHAvite-3 has acceptable performance on current high-end
platforms, but hardware AES support could have a large impact
on its performance, since the AES round function is used directly.
Shavite-3 has modest memory requirements.

The most serious cryptanalytic results on SHAvite-3 are large
numbers of zero pseudo-preimages for the compression function
[46, 47]. However, these require the use of a specific counter
value, which is used only for the final message block, where the
pseudo-preimages apparently cannot be constructed. While this
result appears to pose no direct threat to SHAvite-3, this
unexpected property of the compression function is a source of
concern, especially given the fact that the offending counter value
is used in Shavite-3’s current construction.

.

54



SIMD

SIMD is a wide-pipe Merkle-Damgrd hash construction. Its
compression function is constructed from a keyed permutation, in
a variant of the Davies-Meyer construction. The keyed
permutation is the most innovative part of this design; it uses a
linear code with provable diffusion properties as the ”key
schedule,” and uses four unbalanced Feistel networks that are
reminiscent of the MD4 [48] and MD5 [49] round functions in an
interleaved way as its round function. The nonlinearity in this
design is provided by the overlap of modular addition and XOR
operations and from the bitwise nonlinear functions.

SIMD can achieve very good performance, but only when vector
instructions are available. It also has relatively large memory
requirements, which raises concerns about its suitability for
constrained platforms.

At present, we are aware of no analysis that raises questions
about SIMD’s security.

.

55



Skein (flock of geese, oblong ball of yarn)

Skein is a variant of a Merkle-Damg̊ard hash construction that is
based on a novel tweakable block cipher and chaining mode. The
compression function is used in a variant of the
Matyas-Meyer-Oseas [25] construction that is appropriate for a
tweakable block cipher, and the submission provides proofs that
the construction is secure, assuming a secure compression
function and tweakable block cipher. The block cipher (called
”Threefish”) is constructed from a large number of very simple
rounds and uses only three 64-bit operations–modular addition,
bitwise XORing, and rotation. All nonlinearity in the hash
algorithm is provided by the overlap of modular addition and XOR
operations. The most innovative parts of Skein are the Threefish
block cipher and the chaining mode.

Skein has good performance on high-end platforms, particularly in
64-bit mode, and is also expected to perform well in constrained
platforms and in dedicated hardware implementations. It has
modest memory requirements and benefits from the pipelining
used in modern processors.

The most significant cryptanalytic results on Skein are
distinguishing attacks against reduced- round versions of
Threefish; these do not appear to pose a threat to the full hash
algorithm at this time.

.

56



References from hash summaries point to

those listed in the NIST report [25].

References-1

1. Mihir Bellare, Roch Guérin and Philip Rogaway, XOR MACs:
New Methods for Message Authentication Using Finite
Pseudorandom Functions, LNCS 963, (1995) 15–28.

2. Mihir Bellare and Daniele Micciancio, A new paradigm for
collision-free hashing: incrementality at reduced cost, LNCS
1233, (1997) 163–192.

3. Daniel J. Bernstein, ChaCha, a variant of Salsa20, Jan 28,
2008, http://cr.yp.to/chacha/chacha-20080128.pdf

4. Eli Biham, Recent Advances in Hash Functions: The Way to
Go, slides from various conference presentations, 2005.

5. Eli Biham and Orr Dunkelman, A Framework for Iterative
Hash Functions – HAIFA, NIST Second Cryptographic Hash
Workshop, Santa Barbara, August 2006,
http://csrc.nist.gov/groups/ST/hash/documents/

DUNKELMAN NIST3.pdf

6. John Black, Martin Cochran and Trevor Highland, A Study
of the MD5 Attacks: Insights and Improvements, LNCS
4047, (2006) 262–277.

7. Alan Kaminsky and Stanis law Radziszowski, A Case for a
Parallelizable Hash, Proceedings of MILCOM’2008, San
Diego, CA.

8. Vlastimil Klima, posts at the NIST Cryptographic Hash
Project forum, 2007, hash-forum@nist.gov.

9. Joel Lathrop, Cube Attacks on Cryptographic Hash
Functions, May 21, 2009,
http://www.cs.rit.edu/~jal6806/thesis/thesis.pdf

57



References-2

10. National Institute of Standards and Technology,
Cryptographic Toolkit, Secure Hashing, specification of
SHA-2 standards, 2002,
http://csrc.nist.gov/CryptoToolkit/tkhash.html

11. National Institute of Standards and Technology, Tentative
Timeline of the Development of New Hash Functions, 2007,
http://www.csrc.nist.gov/pki/HashWorkshop/timeline.html

12. MD5, http://en.wikipedia.org/wiki/MD5

13. Alfred J. Menezes, Paul C. van Oorschot and Scott A.
Vanstone, CRC Handbook of Applied Cryptography, CRC
Press 1996. http://www.cacr.math.uwaterloo.ca/hac

14. Vincent Rijmen and Paulo S. L. M. Barreto,
The WHIRLPOOL Hash Function (2003),
http://paginas.terra.com.br/informatica/paulobarreto/

WhirlpoolPage.html

15. Akashi Satoh, Hardware Architecture and Cost Estimates for
Breaking SHA-1, LNCS 3650, (2005) 259–273.

16. Zoe Emily Schnabel, The Estimation of the Total Fish
Population of a Lake, American Mathematical Monthly,
45 (6), (1938) 348–352.

17. Bruce Schneier, Applied Cryptography, second edition,
John Wiley & Sons, 1996.

18. William Stallings, The Whirlpool Secure Hash Function,
Cryptologia, 30, (2006) 55–67.

58



References-3

19. Douglas R. Stinson, Cryptography: Theory and Practice,
third edition, CRC Press 2006.

20. Douglas R. Stinson, Some observations on the theory of
cryptographic hash functions, Designs, Codes and
Cryptography 38, (2006) 259–277.

21. Janusz Stok losa, Ochrona danych i zabezpieczenia w
systemach teleinformatycznych, Wydawnictwo Politechniki
Poznańskiej, 2005.

22. Xiaoyun Wang and Hongbo Yu, How to Break MD5 and
Other Hash Functions, LNCS 3494, (2005) 19–35.

23. Xiaoyun Wang, Hongbo Yu and Yiqun Lisa Yin, Efficient
Collision Search Attacks on SHA-0, LNCS 3621, (2005)
1–16.

24. Xiaoyun Wang, Yiqun Lisa Yin and Hongbo Yu, Finding
Collisions in the Full SHA-1, LNCS 3621, (2005) 17–36.

Prediction (August 2010)

Keccak will win

59



Meta References

Sources to other SHA-3 references:

25. NIST report NISTIR 7620, Status Report on the First Round
of the SHA-3 Cryptographic Hash Algorithm Competition,
September 2009, http://csrc.nist.gov/groups/ST/hash/sha-3

26. The First SHA-3 Candidate Conference, K.U. Leuven,
Belgium, Feb. 25-28, 2009,
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/Feb2009

27. The Second SHA-3 Candidate Conference, Santa Barbara,
CA, Aug. 23-24, 2010,
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010

28. NIST Hash Forum
http://csrc.nist.gov/groups/ST/hash/email list.html

29. ECRYPT SHA-3 Zoo
http://ehash.iaik.tugraz.at/wiki/The SHA-3 Zoo

30. eBASH: ECRYPT Benchmarking of All Submitted Hashes,
http://bench.cr.yp.to/ebash.html

31. NIST report NISTIR 7764, Status Report on the Second
Round of the SHA-3 Cryptographic Hash Algorithm
Competition, February 2011,
http://csrc.nist.gov/groups/ST/hash/sha-3

Revisions
Revision #1, March 2007
Revision #2, August 2008
Revision #3, November 2010
Revision #4, March 2011

60


