Complexity Results in Graph Reconstruction

Stanisław Radziszowski, Rochester Institute of Technology, MFCS 2004

List of Coauthors

- Edith Hemaspaandra

 Rochester Institute of Technology, NY
- Lane Hemaspaandra

 University of Rochester, NY
- Rahul Tripathi

– University of Rochester, NY

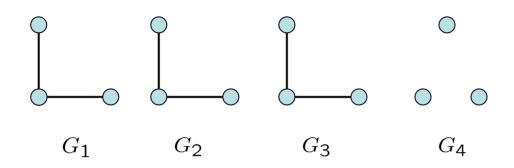
Reconstruction Problems in Graph Theory

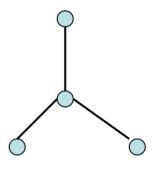
Reconstruction Conjecture [Kel42,Ula60].

Every finite simple undirected graph on ≥ 3 vertices is determined uniquely (up to isomorphism) by its collection of 1-vertex-deleted subgraphs.

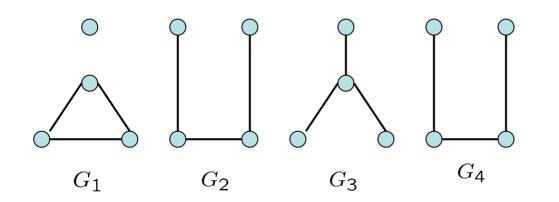
Edge-Reconstruction Conjecture [Har64]. Every finite simple undirected graph with ≥ 4 edges can be reconstructed from its collection of 1-edge-deleted subgraphs.

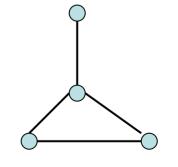
Examples of Vertex- and Edge-Reconstructions





Unique Vertex-preimage G





Unique Edge-preimage G

Basic Questions on Reconstruction of Graphs

- Vertex/Edge-Deck Checking Problem (VDC/EDC).
 - Given a graph G and a collection D of graphs, whether G is a preimage of D?
- Legitimate Vertex/Edge-Deck Problem (LVD/LED).
 - Given a collection of graphs, whether the collection is a legitimate?

More General Questions on Graph Reconstruction

• VDC_c: Given $\langle G; [G_1, ..., G_n] \rangle$, is it the case that $[G_1, ..., G_n] = vertex-deck_c(G)$.

• EDC_c : Given $\langle G; [G_1, ..., G_m] \rangle$, is it the case that $[G_1, ..., G_m] = edge-deck_c(G)$.

More General Questions on Graph Reconstruction

• LVD_c : Given $\langle [G_1, ..., G_n] \rangle$, is there a graph G such that $[G_1, ..., G_n] = vertex-deck_c(G)$.

• LED_c : Given $\langle [G_1, ..., G_m] \rangle$, is there a graph G such that $[G_1, ..., G_m] = edge-deck_c(G)$.

More General Questions on Graph Reconstruction

• For any fixed k \geq 2, problems k-VDC_c, k-EDC_c, k-LVD_c, and k-LED_c can be defined.

• k-VDC_c : Given $\langle G; [G_1, ..., G_k] \rangle$, is it the case that $[G_1, ..., G_k] \subseteq vertex-deck_c(G)$.

Summary of Our Results

- We show that, for all suitable choices of parameters c and k, these problems are either logspace/polynomial-time isomorphic to the Graph Isomorphism Problem (GI) or, in some cases, many-one hard for GI.
 - Strengthen a result of Mansfield [Man82].
 - Extend the results of Kratsch and Hemaspaandra [KH94].
 - Obtain new complexity results on reconstruction of graphs.

A Sample of Our Results

Theorem. For all $c \ge 1$ and $k \ge 2$, GI is polynomial-time isomorphic to k-LED_c.

Key Steps:

1. We first show that k-LED_C \leq_{dtt}^{p} GI and then conclude that k-LED_C \leq_{m}^{p} GI, since R_{dtt}^{p} (GI) = R_{m}^{p} (GI).

2. We show that $\operatorname{GI} \leq_m^p k$ -LED_C:

$$(G,H) \xrightarrow{\sigma} \cup_{i=1}^{k-1} [G \cup (K_{\ell} - S_{\ell,i}) \cup K_{\ell+1}]$$
$$\cup [H \cup K_{\ell} \cup (K_{\ell+1} - S_{\ell+1,1})].$$

Here, G connected and $\ell > \max\{n, k\}$.

A Result on Legitimate Vertex-Deck

Theorem. For all $c \ge 1$ and $k \ge 2$, $\text{GI} \le l_m$ $k\text{-LVD}_c$. In particular, for all $c \ge 1$, $\text{GI} \equiv_{iso}^p$ 2-LVD_c .

Reconstruction Number of Undirected Graphs

- <u>Ally-reconstruction Number [HP85,Myr89]</u>: the minimum number of one-vertex-deleted subgraphs of a graph G that identify G uniquely (up to isomorphism).
- We call this number vrn_∃(G) and define analogous reconstruction numbers ern_∃(G), vrn_∀(G), and ern_∀(G).
- For instance, ern_∀(G) is the minimum number (k) of oneedge-deleted subgraphs (cards) of G such that every collection of k one-edge-cards of G identify G uniquely (up to isomorphism).

Number of Reconstructions

Lemma. For all $n \ge 4$, there is a disconnected graph G_n such that $|V(G_n)| = n$ and $\operatorname{vrn}_{\exists}(G_n) < \operatorname{vrn}_{\forall}(G_n)$.

Theorem. For all $k \ge 2$ and $n \ge 1$, there is a deck of k vertex-cards on $(2^{k-1} + 1)n + k$ vertices with at least 2^n one-vertex-preimages.

Problems

• Characterize the hardness of the following problems about reconstruction numbers:

a){ $\langle G, k \rangle | vrn_{\exists}(G) \leq k$ } $\in \Sigma_2^p$. **b)**{ $\langle G, k \rangle | vrn_{\forall}(G) \leq k$ } $\in \text{coNP}^{\text{GI}}$. **c)**{ $\langle G, k \rangle | ern_{\exists}(G) \leq k$ } $\in \text{NP}^{\text{GI}}$. **d)**{ $\langle G, k \rangle | ern_{\forall}(G) \leq k$ } $\in \text{coNP}^{\text{GI}}$.

