Some Ramsey Problems -Computational Approach

Stanisław Radziszowski Rochester Institute of Technology spr@cs.rit.edu

Gdańsk, November 2010

Outline - Triangles Everywhere or avoiding K₃ in some/most colors 1 Ramsey Numbers - Two Colors Some known and computed facts R(3, 10) is hard Some things to do, computationally 2 Ramsey Numbers - More Colors Some general bounds R(3, 3, 4), R(3, 3, 3, 3) are hard Things to do 3 Most Wanted Folkman Number Edge-arrowing (3, 3) K₄-free edge-arrowing (3, 3) Things to do

4 So, what to do next?

Ramsey Numbers

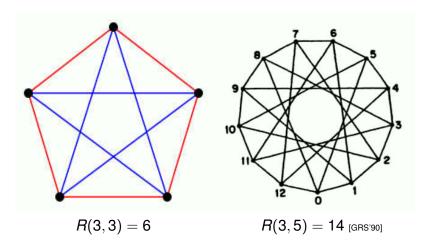
• R(G, H) = n iff

n = least positive integer such that in any 2-coloring of the edges of K_n there is a monochromatic G in the first color or a monochromatic H in the second color

- $R(k, l) = R(K_k, K_l)$
- generalizes to r colors, $R(G_1, \cdots, G_r)$
- 2-edge-colorings \cong graphs
- Theorem (Ramsey 1930): Ramsey numbers exist

3/65 Ramsey Numbers - Two Colors

Unavoidable classics



Basic upper bounds

- R(k, l) = R(l, k), R(k, 2) = k
- Erdős, Szekeres 1935 Greenwood, Gleason 1955

$$R(k, l) \leq R(k - 1, l) + R(k, l - 1)$$

with < if both RHS terms are even, and

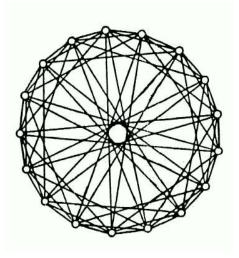
$$R(k+1,l+1) \leq \binom{k+l}{k}$$

•
$$R(3,3) = 6$$
, $R(3,4) = 9$, $R(3,5) = 14$, $R(4,4) = 18$

·I·T

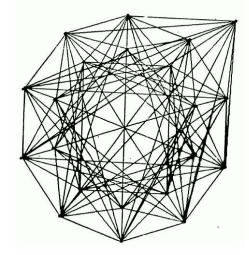
5/65 Ramsey Numbers - Two Colors

Unavoidable classics



R(4,4) > 17, $dist = \{1,2,4,8\}$

A messy case



 $R(K_5 - e, K_5 - e) > 21$, double ring + outlier

7/65 Ramsey Numbers - Two Colors

Diagonal Cases asymptotics

• Bounds (Erdős 1947, Spencer 1975, Thomason 1988)

$$\frac{\sqrt{2}}{e}2^{n/2}n < R(n,n) < \binom{2n-2}{n-1}n^{-1/2+c/\sqrt{\log n}}$$

• Newest upper bound (Conlon, 2010)

$$R(n+1,n+1) \leq \binom{2n}{n} n^{-c \frac{\log n}{\log \log n}}$$

• **Conjecture** (Erdős 1947, \$100) $\lim_{n\to\infty} R(n, n)^{1/n}$ exists. If it exists, it is between $\sqrt{2}$ and 4 (\$250 for value).

Diagonal Cases concretely

• Best construction (Frankl, Wilson 1981)

 $n^{c \log n / \log \log n} < R(n, n)$

• First open case (Exoo 1989, MR 1997)

 $43 \leq R(5,5) \leq 49$

• Second open case (Kalbfleisch 1965, Mackey 1994)

 $102 \le R(6,6) \le 165$

	- SILE	
A	TENA .	
R ·	Τ·Τ	
Personal P	Corportions	

9/65 Ramsey Numbers - Two Colors

Off-Diagonal Cases asymptotics

- *R*(3, *) discussed later in the talk
- Bounds (Spencer 1977, Li and Rousseau 2000)

$$c_k \left(\frac{n}{\log n}\right)^{(k+1)/2} < R(k,n) < (1+o(1))\frac{n^{k-1}}{\log^{k-2} n}$$

A generalization (Krivelevich 1995)
 ρ(H) = largest density (e - 1)/(v - 2) of subgraphs of H
 ρ(K_k) = (k + 1)/2

$$c_H\left(rac{n}{\log n}
ight)^{
ho(H)} < R(H,n)$$

Off-Diagonal Cases

fixing small k

- *R*(3, *) later in these slides
- McKay-R 1995, *R*(4,5) = 25
- Bohman triangle-free process 2009

$$R(4,n) = \Omega(n^{5/2}/\log^2 n)$$

 Kostochka, Pudlák, Rődl - 2010 constructive lower bounds

$$R(4,n) = \Omega(n^{8/5}), \ R(5,n) = \Omega(n^{5/3}), \ R(6,n) = \Omega(n^2)$$

(vs. probabilistic 5/2, 6/2, 7/2 with /logs)

 $\mathbf{R} \cdot \mathbf{I} \cdot \mathbf{T}$

11/65 Ramsey Numbers - Two Colors

Values and Bounds on R(k, l)

two colors, avoiding cliques

1	3	4	5	6	7	8	9	10	11	12	13	14	15
k .				u (1				40	46	52	59	66	73
3	6	9	14	18	23	28	36	43	51	59	69	78	88
		10	05	35	49	56	73	92	97	128	133	141	1.53
4		18	25	41	61	84	115	149	191	238	291	349	417
	2 C 2		43	58	80	101	125	143	159	185	209	235	265
5	49	49	87	143	216	316	442	210,0455	848	0.0000	1461	10004	
6				102	113	127	169	179	253	262	317		401
0				165	298	495	780	1171	1.000000	2566		5033	
7					205	216	233	289	405	416	511		
1					540	1031	1713	2826	4553	6954	10581	15263	22116
8						282	317				817		861
8			-			1870	3583	6090	10630	16944	27490	41.525	63620
							565	580					
9				s – 2		5	6588	12677	22325	39025	64871	89203	
10								798 23556		81200			1265

[EIJC survey Small Ramsey Numbers, revision #12, 2009]

General lower bound constructions

aren't that good

Theorem Burr, Erdős, Faudree, Schelp, 1989 $R(k,n) \ge R(k,n-1) + 2k - 3$ for $k \ge 2, n \ge 3$ (not $n \ge 2$)

Theorem (Xu-Xie-Shao-R 2004, 2010) If $2 \le p \le q$ and $3 \le k$, then $R(k, p+q-1) \ge q$

$$R(k,p) + R(k,q) + \begin{cases} k-3, & \text{if } 2 = p \\ k-2, & \text{if } 3 \le p \text{ or } 5 \le k \\ p-2, & \text{if } 2 = p \text{ or } 3 = k \\ p-1, & \text{if } 3 \le p \text{ and } 4 \le k \end{cases}$$

For p = 2, n = q + 1, we have R(k, p) = k, which implies BEFR'89

 $\mathbf{X} \cdot \mathbf{I} \cdot \mathbf{T}$

13/65 Ramsey Numbers - Two Colors

Proof by construction

2004 cases

Given

(k, p)-graph G, (k, q)-graph H, $k \ge 3$, $p, q \ge 2$ G and H contain induced K_{k-1} -free graph M

construct

(k, p+q-1)-graph *F*, n(F) = n(G) + n(H) + n(M)

 $VG = \{v_1, v_2, ..., v_{n_1}\}, VH = \{u_1, u_2, ..., u_{n_2}\}$ $VM = \{w_1, ..., w_m\}, m \le n_1, n_2, K_{k-1} \not\subset M$ $G[\{v_1, ..., v_m\}], H[\{u_1, ..., u_m\}] \cong M$ $\phi(w_i) = v_i, \psi(w_i) = u_i \text{ isomorphisms}$

 $VF = VG \cup VH \cup VM$ $E(G, H) = \{\{v_i, u_i\} \mid 1 \le i \le m\}$ $E(G, M) = \{\{v_i, w_j\} \mid 1 \le i \le n_1, 1 \le j \le m, \{v_i, v_j\} \in E(G)\}$ $E(H, M) = \{\{u_i, w_j\} \mid 1 \le i \le n_2, 1 \le j \le m, \{u_i, u_j\} \in E(H)\}$

#vertices / #graphs

no exhaustive searches beyond 13

4	11
5	34
6	156
7	1044
8	12346
9	274668
10	12005168
11	1018997864
12	$165091172592 \approx 1.6 * 10^{11}$
13	$50502031367952 \ \approx 5 * 10^{13}$
14	29054155657235488
15	31426485969804308768
16	64001015704527557894928
17	245935864153532932683719776

 $18 \ \approx 2 * 10^{30}$

15/65 Ramsey Numbers - Two Colors

R · I · T

#vertices / #triangle-free graphs

no exhaustive searches beyond 17

4	7
5	14
6	38
7	107
8	410
9	1897
10	12172
11	105071
12	1262180
13	20797002
14	467871369
15	14232552452
16	$581460254001 \approx 6 * 10^{11}$
	too many to process
17	$pprox 3 * 10^{12}$

Asymptotics

Ramsey numbers avoiding K_3

• Recursive construction yielding $R(3, 4k + 1) \ge 6R(3, k + 1) - 5$ $\Omega(k^{\log 6/\log 4}) = \Omega(k^{1.29})$

Chung-Cleve-Dagum 1993

- Explicit Ω(k^{3/2}) construction
 Alon 1994, Codenotti-Pudlák-Giovanni 2000
- Kim 1995, lower bound Ajtai-Komlós-Szemerédi 1980, upper bound Bohman 2009, triangle-free process

$$R(3,k) = \Theta\left(\frac{k^2}{\log k}\right)$$

17/65 Ramsey Numbers - Two Colors

Small R(3, k) cases

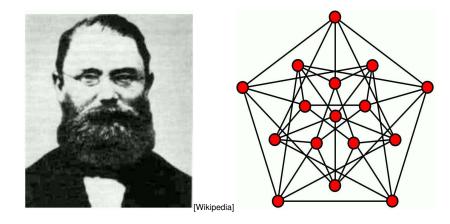
k	R(3,k)	year	reference [lower/upper]
3	6	1953	Putnam Competition
4	9	1955	Greenwood-Gleason
5	14	1955	Greenwood-Gleason
6	18	1964	Kéry
7	23	1966 / 1968	Kalbfleisch / Graver-Yackel
8	28	1982 / 1992	Grinstead-Roberts / McKay-Zhang
9	36	1966 / 1982	Kalbfleisch / Grinstead-Roberts
10	40-43	1989 / 1988	Exoo / Kreher-R

Known values of R(3, k)

Erdős and Sós, 1980, asked about $3 \le \Delta_k = R(3, k) - R(3, k-1) \le k$:

$$\Delta_k \xrightarrow{k} \infty$$
 ? $\Delta_k / k \xrightarrow{k} 0$?

Clebsch (3, 6; 16)-graph on $GF(2^4)$ (x, y) $\in E$ iff $x - y = \alpha^3$



Alfred Clebsch (1833-1872)

19/65 Ramsey Numbers - Two Colors

Larger Cases

 K_3 versus $K_k - e$ or K_k

 $\begin{array}{ll} R(3, {\it K_7-e})=21 & R(3, {\it K_8-e})=25 & R(3, {\it K_9-e})=31 \\ R(3, 7)=23 & R(3, 8)=28 & R(3, 9)=36 \end{array}$

All $R(3, K_k - e)$ critical graphs are known for $k \le 8$ All $R(3, K_k)$ critical graphs are known for $k \le 7$

First open cases:

$$\begin{array}{ll} 37 \leq R(K_3,K_{10}-e) \leq \ {\color{red}{38}}, & 42 \leq R(K_3,K_{11}-e) \leq 47 \\ 40 \leq R(K_3,K_{10}) & \leq \ {\color{red}{43}}, & 46 \leq R(K_3,K_{11}) & \leq \ {\color{red}{51}} \end{array}$$

Upper bounds by counting edges

computing R(3, 10) is difficult

Definition: $e(k, n) = \min \#$ edges in *n*-vertex triangle-free graphs without independent sets of order k

- Very good lower bounds on *e*(*k* 1, *n d*) give good lower bounds on *e*(*k*, *n*)
- For any graph $G \in R(k, n, e)$

$$ne - \sum_{i=0}^{k-1} n_i(e(k-1, n-i-1) + i^2) \ge 0$$

- *e*(9, *n*) not known for 27 ≤ *n* ≤ 35 seem needed before improving on *e*(10, *n*) for *n* > 37
- known e(8, n)-graphs not sufficient to improve on e(9, n)

21/65 Ramsey Numbers - Two Colors

 $R(K_3, G)$ general non-asymptotic results

- $R(K_3, W_n) = R(C_3, C_n) = 2n 1$ Faudree-Schelp 1974, Burr-Erdős 1983 all critical colorings, R-Jin 1994
- $R(K_3, G) = 2n(G) 1$, for connected G $e(G) \le 17(n(G) + 1)/15$, $n(G) \ge 4$ Burr-Erdős-Faudree-Rousseau-Schelp 1980
- $R(K_3, G) \le 2e(G) + 1$, isolate-free G $R(K_3, G) \le n(G) + e(G)$, a conjecture for all GSidorenko 1992-3, Goddard-Kleitman 1994

 $R(K_3, G)$ general non-asymptotic results

- *R*(*nK*₃, *mK*₃) = 2*n* + 3*m* for *n* ≥ *m* ≥ 1, *n* ≥ 2 Burr-Erdős-Spencer 1975
- $R(K_3, K_3 + \overline{K_n}) = R(K_3, K_3 + C_n) = 2n + 5$ for $n \ge 212$ Zhou 1993
- *R*(*K*₃, *K*₂ + *T_n*) = 2*n* + 3 for *n* ≥ 4 Song-Gu-Qian 2004
- *R*(*K*₃, *G*) for all connected *G*, *n*(*G*) ≤ 9 Brandt-Brinkmann-Harmuth 1998-2000

23/65 Ramsey Numbers - Two Colors

Things to do for two colors avoiding triangles

- Enumerate all critical (3, 8; 27)-graphs 430K+ known already
- Enumerate all critical (3, 9; 35)-graphs only one is known!
- Finish off $37 \le R(3, K_{10} e) \le 38$
- *R*(3, 10) ≤ 43, get it down first to 42

 $R(3, 10) \ge 40$, don't even try to do better :-(lower bound 40 is probably correct

24/65 Ramsey Numbers - Two Colors

Stay awake - applications exist

ELJC Dynamic Survey, Dec 2004 Ramsey Theory Applications 269 references Vera Rosta* Dept. of Mathematics and Statistics McGill University, Montréal Rényi Institute of Mathematics, Hungarian Academy of Sciences rosta@renyi.hu

Submitted: Sep 17, 2001; Accepted: Apr 20, 2004; Published: Dec 7, 2004 Mathematics Subject Classifications: Primary: 05D10, 05-02, 05C90; Secondary: 68R05

Abstract

There are many interesting applications of Ramsey theory, these include results in number theory, algebra, geometry, topology, set theory, logic, ergodic theory, information theory and theoretical computer science. Relations of Ramsey-type theorems to various fields in mathematics are well documented in published books and monographs. The main objective of this survey is to list applications mostly in theoretical computer science of the last two decades not contained in these.

25/65 Ramsey Numbers - Two Colors

More colors

$$R(k_1,\ldots,k_r) \leq 2-r + \sum_{i=1}^r R(k_1,\ldots,k_{i-1},k_i-1,k_{i+1},\ldots,k_r)$$

with strict < if the RHS is even and sum has en even term Greenwood-Gleason 1955

Only two known multicolor cases, (3,3,4) and (3,3,3,3), where the RHS is improved. Likely this bound is never tight, except for (3,3,3).

More colors

some constructive results

- Xu-Xie-Exoo-R 2004
 - for $k_1 \ge 5$ and $k_i \ge 2$ $R(k_1, 2k_2 - 1, k_3, \cdots, k_r) \ge 4R(k_1 - 1, k_2, k_3, \cdots, k_r)$
 - using $k_1 = l, k_2 = 2, k_3 = k$ in the above $R(3, k, l) \ge 4R(k, l-1) 3$
 - use k = 3 $R(3,3,l) \ge 4R(3,l-1) - 3$
- *R*(3,3,*k*) = Θ(*k*³poly-log *k*) Alon-Rődl 2005

27/65 Ramsey Numbers - More Colors

$R_r(3) = R(3, 3, \cdots, 3)$ just no triangles

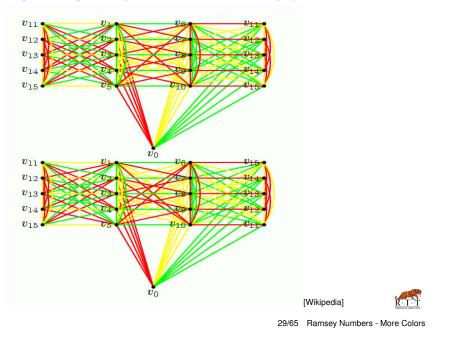
• The limit $L = \lim_{r \to \infty} R_r(3)^{\frac{1}{r}}$ exists Chung-Grinstead 1983

 $(2s(r)+1)^{\frac{1}{r}} = c_r \approx_{(r=6)} 3.199 < L$

- Much work on Schur numbers s(r)via sum-free partitions and cyclic colorings $s(r) > 89^{r/4-c\log r} > 3.07^r$ [except small r] Abbott+ 1965+
- $s(r) + 2 \le R_r(3)$ $s(r) = 1, 4, 13, 44, \ge 160, \ge 536$
- $R_r(3) \ge 3R_{r-1}(3) + R_{r-3}(3) 3$ Chung 1973

R(3,3,3) = 17

two Kalbfleisch (3, 3, 3; 16)-colorings, each color is a Clebsch graph



Three colors - R(3, 3, 4)

the only (as of now) not hopeless case

- $30 \le R(3,3,4)$, cyclic coloring, Kalbfleisch 1966
- $R(3,3,4) \leq 31$, computations, Piwakowski-R 1998

Theorem (Piwakowski-R 2001): R(3,3,4) = 31 iff there exists a (3,3,4;30)-coloring *C* in which every edge in 3-rd color has an endpoint *x* with degree 13. Furthermore, *C* has at least 25 vertices with color degree sequence (8,8,13).

Proof: Gluing possible arrangements of color induced neighborhoods of v in a (3, 3, 4; 30)-coloring:

 $(3, 4; s), (3, 4; t), (3, 3, 3; u \ge 14)$ with s + t + u = 29

too many (3, 3, 3; 13)'s to proceed further \diamond

Four colors - $R_4(3)$

$51 \leq R(3,3,3,3) \leq 62$

year	reference	lower	upper
1955	Greenwood, Gleason	42	66
1967	false rumors	[66]	
1971	Golomb, Baumert	46	
1973	Whitehead	50	65
1973	Chung, Porter	51	
1974	Folkman		65
1995	Sánchez-Flores		64
1995	Kramer (no computer)		62
2004	Fettes-Kramer-R (computer)		62

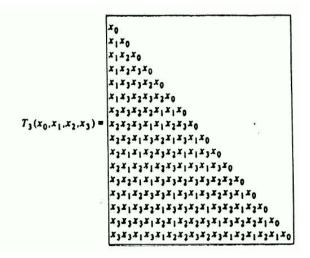
History of bounds on $R_4(3)$ [from FKR 2004]

R · I · T

31/65 Ramsey Numbers - More Colors

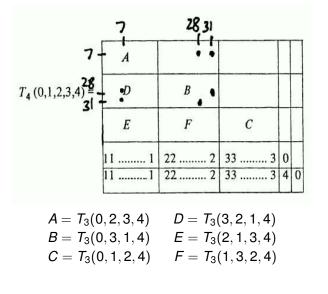
Lower bound for $R_4(3)$

start with Clebsch (3,3,3;16)-coloring



Lower bound for $R_4(3)$

Chung construction 1973, basic step yields (3,3,3,3;50)-coloring



<u>R · I · T</u>

33/65 Ramsey Numbers - More Colors

Lower bound for $R_4(3)$

attempts to beat Chung's construction for 4 colors

Iterate transformations of colorings:

Merging pairs of colors (easy)

 $(3,3,3,3;n) \rightarrow (3,3,6;n), (3,3,6;n) \rightarrow (6,6;n)$

Deleting a vertex with all adjacent edges (easy)

 $(3,3,3,3;n) \rightarrow (3,3,3,3;n-1)$

• Single color splitting (moderate)

 $(6,6;n) \rightarrow (3,3,6;n), (3,3,6;n) \rightarrow (3,3,3,3;n)$

• Limited one point extension (hard)

$$(6,6;n) \to (6,6;n+1)$$

Lower bound for $R_4(3)$

attempts to beat Chung's construction

Results

- Many nonisomorphic constructions on 50 vertices, yet, all of them are just minor modifications of the Chung construction.
- Very hard to get close to 50 vertices with heuristics.

Used great software by Brendan McKay

- *nauty*, canonical labelings of graphs (and more), isomorph deletion
- geng, graph generator
- autoson, network job scheduling

R · I · T

35/65 Ramsey Numbers - More Colors

Lower bound for $R_k(3)$

Chung construction 1973, recursion

$$R_r(3) \geq 3R_{r-1}(3) + R_{r-3}(3) - 3$$

	A			
$T_{k+1}(0,1,2,,k+1) =$	D	B		
	E	F	с	
	111	222 : : : 2 2 2	333	G
<i>4</i> 5	111 	222 : : 22	333 : : 33	
	A = Tk(0,2,3)	,4,5,,k+1), ,4,5,,k+1),	$D = T_k(0, 3, 1, D) = T_k(3, 2, 1, D)$	4, 5,
	$E = T_k(2, 1, 3)$ $G = T_{k-2}(0, 4)$	4.5,, k+1),	$F = T_k(1,3,2)$	4, 5,

36/65 Ramsey Numbers - More Colors

Upper bound for $R_4(3)$

color degree sequences for (3, 3, 3, 3; \geq 59)-colorings

n	orders of $N_{\eta}(v)$	
65 64 63	[16, 16, 16, 16] [16, 16, 16, 15] [16, 16, 16, 14]	Whitehead, Folkman 1973-4 Sánchez-Flores 1995
62	[16, 16, 15, 15] [16, 16, 16, 13] [16, 16, 15, 14] [16, 15, 15, 15]	Kramer 1995+ - Fettes-Kramer-R 2004
61	[16, 16, 16, 12] [16, 16, 15, 13] [16, 16, 14, 14] [16, 15, 15, 14] [15, 15, 15, 15]	
60	[15, 15, 15, 15] [16, 16, 16, 16, 11] [16, 16, 15, 12] [16, 16, 14, 13] [16, 15, 15, 13] [16, 15, 14, 14] [15, 15, 15, 15, 14]	guess: doable in 2015
59	[15, 15, 15, 14] [16, 16, 16, 10] [16, 16, 15, 11] [16, 16, 14, 12] [16, 15, 15, 12] [16, 15, 15, 12] [16, 15, 15, 13] [15, 15, 14, 14]	

<u>R · I · T</u>

37/65 Ramsey Numbers - More Colors

More colors - summary

just no triangles

k	value	or	bounds	reference(s)
2		6		[cf. Bush 1953]
3		17		Greenwood-Gleason 1955
4	51	_	62	Chung 1973 – Fettes-Kramer-R 2004
5	162	_	307	Exoo 1994 – easy
6	538	_	1838	Fredricksen-Sweet 2000 – easy
7	1682	—	12861	Fredricksen-Sweet 2000 – easy

Bounds and values of $R_k(K_3)$

Things to do

computational multicolor Ramsey numbers problems

- improve $45 \le R(3,3,5) \le 57$
- finish off $30 \le R(3, 3, 4) \le 31$
- understand why heuristics don't find $51 \le R_4(3)$
- improve on $R_4(3) \leq 62$

39/65 Ramsey Numbers - More Colors

More Arrowing

F, G, H - graphs, s, t, s_i - positive integers

Definitions

 $F \rightarrow (s_1, ..., s_r)^e$ iff for every *r*-coloring of the edges *F* contains a monochromatic copy of K_{s_i} in some color *i*.

 $F \rightarrow (G, H)^e$ iff for every blue/red edge-coloring of *F*, *F* contains a blue copy of *G* or a red copy of *H*.

Facts

 $R(s,t) = \min\{n \mid K_n \to (s,t)^e\}$ $R(G,H) = \min\{n \mid K_n \to (G,H)^e\}$

Folkman problems

edge Folkman graphs $\mathcal{F}_{e}(s,t;k) = \{G \rightarrow (s,t)^{e} : K_{k} \not\subseteq G\}$

edge Folkman numbers (very hard to compute) $F_e(s, t; k)$ = the smallest *n* such that there exists an *n*-vertex graph *G* in $\mathcal{F}_e(s, t; k)$

vertex Folkman graphs/numbers (hard to compute) 2-coloring vertices instead of edges

Theorem (Folkman 1970): For all k > max(s, t), edgeand vertex Folkman numbers $F_e(s, t; k)$, $F_v(s, t; k)$ exist.

41/65 Most Wanted Folkman Number

Two small cases warming up

- $G = K_6$ has the smallest number of vertices among graphs which are not a union of two K_3 -free graphs, or
 - $K_6
 ightarrow (K_3, K_3)^e$ and $K_5
 ightarrow (K_3, K_3)^e$
- What if we want *G* to be *K*₆-free? Graham (1968) proved that
 - $K_8 C_5 = K_3 + C_5 \rightarrow (K_3, K_3)$ $|V(H)| < 8 \land K_6 \not\subset H \Rightarrow H \not\rightarrow (K_3, K_3)$

Known values/bounds for $F_e(3, 3; k)$

the challenge is to compute $F_e(3, 3; 4)$

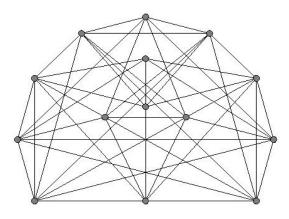
 $k > R(s, t) \Rightarrow F_e(s, t; k) = R(s, t)$ $k \le R(s, t)$, very little known in general

k	$F_{e}(3,3;k)$	graphs	reference
≥ 7	6	K ₆	folklore
6	8	$C_5 + K_3$	Graham 1968
5	15	659 graphs	Piwakowski-Urbański-R 1999
4	\leq 941	$\alpha^5 \mod 941$	Dudek-Rődl 2008

 $\frac{\mathbf{R} \cdot \mathbf{I} \cdot \mathbf{T}}{\mathbf{R} \cdot \mathbf{I} \cdot \mathbf{T}}$

43/65 Most Wanted Folkman Number

 $F_e(3,3;5) = 15$, and $F_v(3,3;4) = 14$ $G + x \rightarrow (3,3)^e$, and $G \rightarrow (3,3)^v$



unique 14-vertex bicritical F_v(3,3;4)-graph G [PRU 1999]

History of upper bounds on $F_e(3,3;4)$

- 1967 Erdős, Hajnal state the problem
- 1970 Folkman proves his theorem for 2 colors VERY large bound for $F_e(3,3;4)$.
- 1975 Erdős offers \$100 (or 300 Swiss francs) for deciding if *F_e*(3,3;4) < 10¹⁰
- 1988 Spencer, probabilistic proof for the bound 3×10^8 (1989 Hovey finds a mistake, bound up to 3×10^9)
- 2007 Lu, \leq 9697, spectral analysis of modular circulants
- 2008 Dudek-Rődl, *F_e*(3,3;4) ≤ 941 circulant arc lengths α⁵ mod 941

45/65 Most Wanted Folkman Number

$F_{e}(3,3;4) \leq 941$

some details of the proof by Dudek-Rődl

• Theorem. If for every vertex $v \in V(G)$

$$Maxcut(G[N(v)]) < \frac{2}{3}|E(G[N(v)])|$$

then $G \rightarrow (3,3)^e$.

Define graph *H* on vertices *E*(*G*) with edges
 {(*e*, *f*) : *e*, *f* ∈ *E*(*G*), *efg* is a triangle in *G* for some *g*}.

Maxcut approximation in *H* can imply $G \rightarrow (3,3)^e$.

• This works for the graph

$$G = (\mathcal{Z}_{941}, \{(i, j) : i - j = \alpha^5 \mod 941\})$$

History of lower bounds on $F_e(3,3;4)$

- $10 \le F_e(3,3;4)$ Lin 1972
- $16 \le F_e(3,3;4)$ Piwakowski-Urbański-R 1999 since $F_e(3,3;5) = 15$, all graphs in $\mathcal{F}_e(3,3;5)$ on 15 vertices are known, and all of them contain K_4 's
- ANY proof technique improving on 19 very likely will be of interest

R · I · T

47/65 Most Wanted Folkman Number

Lower bound

proof "by hand" that $18 \leq F_e(3,3;4)$

- G_{17} critical for R(4,4) = 18, check that $G_{17} \neq (3,3;4)^e$.
- *G*₁₇ ≈ *G* → (3,3;4)^{*e*}, |*V*(*G*)| = 17,
 G must have indset *I* on 4 vertices.
- $H = I + G[V(G) \setminus I] \rightarrow (3,3;5)^e$.
- Dropping any three vertives from *I*, gives *K*₅-free graph on 14 vertices.
- Contradiction with $F_e(3,3;5) = 15$.

Computing $19 \le F_e(3,3;4)$ quite similar, but much more work, use all 153 graph $H \in \mathcal{F}_V(3,3;4)$.

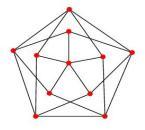
General facts on $F_e(s, t; k)$

- $G \in \mathcal{F}_e(s, t; k) \Rightarrow \chi(G) \ge R(s, t)$ no k in the bound!, easy
- $\mathcal{F}_{e}(s,t;k) = R(s,t)$ for k > R(s,t) easy
- $\mathcal{F}_e(s, t; R(s, t)) = R(s, t) + c$ so, so in most cases *c* is small (2, 4, 5)
- $\mathcal{F}_e(s, t; k) \ge R(s, t) + 4$ for k < R(s, t) hard
- $G \in \mathcal{F}_{v}(R(s-1,t), R(s,t-1); k-1) \Rightarrow$ $G + x \in \mathcal{F}_{e}(s,t; k)$, or equivalently
- $G + x \not\rightarrow (s, t)^e \Rightarrow G \not\rightarrow (R(s 1, t), R(s, t 1))^v$, and clearly cl(G + x) = cl(G) + 1

49/65 Most Wanted Folkman Number

Vertex Folkman numbers pearls

 $F_{\nu}(2,2,2;3) = 11$ the smallest 4-chromatic triangle-free graph

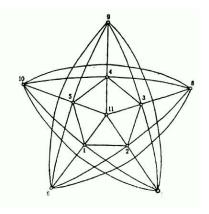


Grőtzsch graph [mathworld.wolfram.com]

 $F_v(2, 2, 2, 2; 3) = 22$, Jensen-Royle 1995 the smallest 5-chromatic triangle-free graph has 22 vertices

Vertex Folkman numbers pearls

 $F_{\nu}(2, 2, 2, 2; 4) = 11$, Nenov 1984, also 1993 the smallest 5-chromatic K_4 -free graph has 11 vertices



 $17 \le F_{\nu}(4,4;5) \le 23$, Xu-Luo-Shao 2010

51/65 Most Wanted Folkman Number

Vertex Folkman numbers pearls

Theorem (ancient folklore) $F_{v}(\underbrace{2, \dots, 2}{r}; r) = r + 5$, for $r \ge 5$. **Proof.** For the upper bound consider as the critical graph $K_{r-5} + C_5 + C_5$ for the lower bound take any K_r -free graph *G* on r + 4 vertices, then assemble matchings in \overline{G} to show $\chi(G) \le r$

Theorem (Nenov 2003) $F_v(\underbrace{3,\cdots,3}_{r};2r)=2r+7, \text{ for } r\geq 3.$ For r = 2, a small but hard case, $F_{V}(3,3;4) = 14$ (PRU 1999)

Testing arrowing is hard

theory/practice

- Testing whether $F \rightarrow (3,3)^e$ is **coNP**-complete Burr 1976
- Determining if *R*(*G*, *H*) < *m* is **NP**-hard Burr 1984
- Testing whether F → (G, H)^e is Π^p₂-complete Schaefer 2001
- Implementing fast $F \rightarrow (3,3)^e$ is challenging

Testing whether $F \to (K_2, K_n)^e$ is the same as checking $K_n \subset F$, so it is **NP**-hard.

53/65 Most Wanted Folkman Number

Complexity of (edge) arrowing

<u>Problem</u>	<u>Fixed</u>	Complexity
$egin{array}{ll} F ightarrow (G,H) \ F ightarrow (G,H) \ F ightarrow (K_2,H) \end{array}$	G , H	Π ^p -complete in coNP NP -complete
$F \rightarrow (K_2, H)$	Н	NP-complete
$F ightarrow (T, K_n)$	<i>T</i> , <i>e</i> (<i>T</i>) ≥ 2	П ^p -complete
F ightarrow (G, H)	$G, H \in \Gamma_3$	coNP-complete
$F ightarrow (P_4, P_4)$		coNP-complete
$F \rightarrow (kK_2, H)$	k, H	P
$F \rightarrow (K_{1,n}, K_{1,m})$		Р
$K_n \rightarrow (G, H)$		NP-hard

Compendium of arrowing complexity by many.

Tools in complexity of arrowing

(G, H)-enforcers, -signal senders, -cleavers, -determiners are the tools (gadgets) used in reductions (Burr, Schaefer). They give control on $F \rightarrow (G, H)$.

Definition. (Grossman 1983) *F* is a (*G*, *G*)-cleaver iff there exists unique coloring of *F* witnessing $F \not\rightarrow (G, G)$.

 P_4 cleaved $F \not\rightarrow (P_4, P_4)$, with only one witness coloring.

Known K_3 -cleaved graphs contain K_4 . K_5 is not C_5 -cleaved, P_3 cleaves C_{2n} .

55/65 Most Wanted Folkman Number

G₁₂₇ Hill-Irving 1982

 $G_{127} = (\mathcal{Z}_{127}, E)$ $E = \{(x, y) | x - y = \alpha^3 \pmod{127}\}$

Ramsey (4, 12)-graph, a color in (4, 4, 4; 127) Exoo started to study if $G_{127} \rightarrow (3, 3)^e$

- 127 vertices, 2667 edges, 9779 triangles
- no K₄'s, independence number 11, regular of degree 42
- vertex- and edge-transitive
- 5334 (= 127 * 42) automorphisms
- (127, 42, 11, {14, 16}) regularity
- K₁₂₇ can be partitioned into three G₁₂₇'s

When to expect $G \rightarrow (3,3)^e$?

- *G* has a large number of triangles
- G has many small dense subgraphs
- Spencer's proof is far from useful for G₁₂₇

Conjecture. $G_{127} \rightarrow (3,3)^e$

Plan. Find a subgraph *H*, embedded in *G* in many places, so there is a small number of colorings witnessing $H \not\rightarrow (3,3)^e$. Try to extend all (not many) colorings for $H \not\rightarrow (3,3)^e$ to *G*.

or, if this is too expensive ...

go via SAT ...

57/65 Most Wanted Folkman Number

Reducing $\{G \mid G \not\rightarrow (3,3)^e\}$ to 3-SAT

edges in $G \mapsto$ variables of ϕ_G each (edge)-triangle *xyz* in $G \mapsto$ add to ϕ_G

$$(x + y + z) \wedge (\overline{x} + \overline{y} + \overline{z})$$

Clearly,

 $\boldsymbol{G} \not\rightarrow (\boldsymbol{3},\boldsymbol{3})^{\boldsymbol{e}} \Longleftrightarrow \phi_{\boldsymbol{G}}$ is satisfiable

For $G = G_{127}$, ϕ_G has 2667 variables and 19558 3-clauses, 2 for each of the 9779 triangles.

Note: By taking only the positive clauses, we obtain a reduction to ϕ'_{G} in NAE-3-SAT with half of the clauses.

Use SAT-solvers

SAT-solver competitions, 3 medals in 9 categories

(random, crafted, industrial) \times (SAT, UNSAT, ALL)

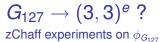
SATzilla (UBC) - winner of 2007 and 2009 competitions clasp (D), precosat (SF/A/NL) - winners of 2009 competition

The category we need: CRAFTED-UNSAT

Rsat, Picosat, Minisat, March_KS other recent leading SAT-solvers

. 🔊	518		1	
R	I	•) •)	Ţ	

59/65 Most Wanted Folkman Number



- Pick $H = G_{127}[S]$ on m = |S| vertices. Use zChaff to split *H*:
 - $m \leq 80$, *H* easily splittable
 - $m \approx$ 83, phase transition ?
 - $m \ge 86$, splitting *H* is very difficult
- #(clauses)/#(variables) = 7.483 for G₁₂₇, far above conjectured phase transition ratio r ≈ 4.2 for 3-SAT. It is known that

 $3.52 \le r \le 4.596$

Folkman problems to work on

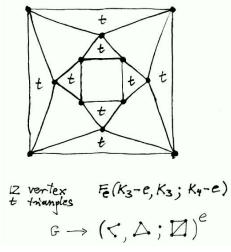
Is it true that $50 \le F_e(3,3;4) \le 100$?

- Decide whether $G_{127} \rightarrow (3,3)^e$
- Improve on $19 \le F_e(3,3;4) \le 941$
- Study $F_e(3,3;G)$ for $G \in \{K_5 e, W_5 = C_4 + x\}$
- Study $F_e(K_4 e, K_4 e; K_4)$
- Don't study F_e(K₃, K₃; K₄ e) it doesn't exist :-)

	978 I	E.		
R	۰I		Ť	

61/65 Most Wanted Folkman Number

A small Folkman graph



can drop any vertex, arrowing still holds!

So, what to do next?

Hard but potentially feasible tasks:

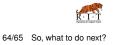
- Improve any of the Ramsey bounds
 - $40 \le R(3, 10) \le 43$
 - $30 \le R(3,3,4) \le 31$
 - $51 \le R(3,3,3,3) \le 62$
- Folkman arrowing of K_3
 - Improve on $19 \le F_e(3,3;4) \le 941$
 - Study $F_e(3,3;G)$ for $G \in \{K_5 e, W_5 = C_4 + x\}$

63/65 So, what to do next?

References

- Alexander Soifer
 The Mathematical Coloring Book, Springer 2009
- SPR's survey *Small Ramsey Numbers* at the *EIJC* Dynamic Survey DS1, revision #12, August 2009 http://www.combinatorics.org/Surveys

All other references therein.



Thanks for listening

65/65 So, what to do next?