

An Overview of Cryptanalysis Research for the Advanced Encryption Standard

Alan Kaminsky, Rochester Institute of Technology Michael Kurdziel, Harris Corporation Stanisław Radziszowski, Rochester Institute of Technology

November 2, 2010

Agenda

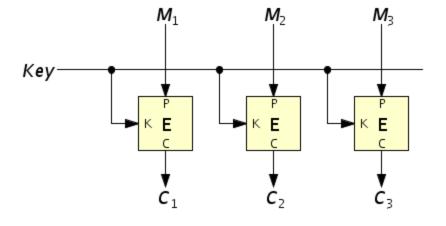
- Background
 - History
 - Theoretical vs. practical attacks
 - Block cipher usage
- AES attacks
 - Brute force attacks
 - Linear and differential attacks
 - Algebraic attacks
 - SAT solver attacks
 - Related-key attacks
 - Side channel attacks
- Prognosis and recommendations

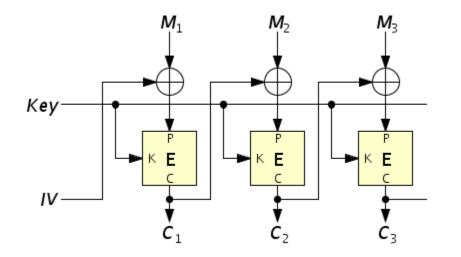
Background

History

- 1976 DES block cipher published
- 1991 Differential cryptanalysis of DES published
- 1993 Linear cryptanalysis of DES published
- 1997 AES Competition commences
- 1998 AES Competition Round 1 ends; 15 candidates chosen
- 1998 EFF's Deep Crack breaks DES (56 hours, \$250,000)
- 1998 Triple-DES block cipher published
- 1999 AES Competition Round 2 ends; 5 candidates chosen
- 2000 AES Competition Round 3 ends; Rijndael wins
- 2001 AES block cipher published
- 2003 NSA approves AES for Type 1 Suite B encryption
- ???? AES broken

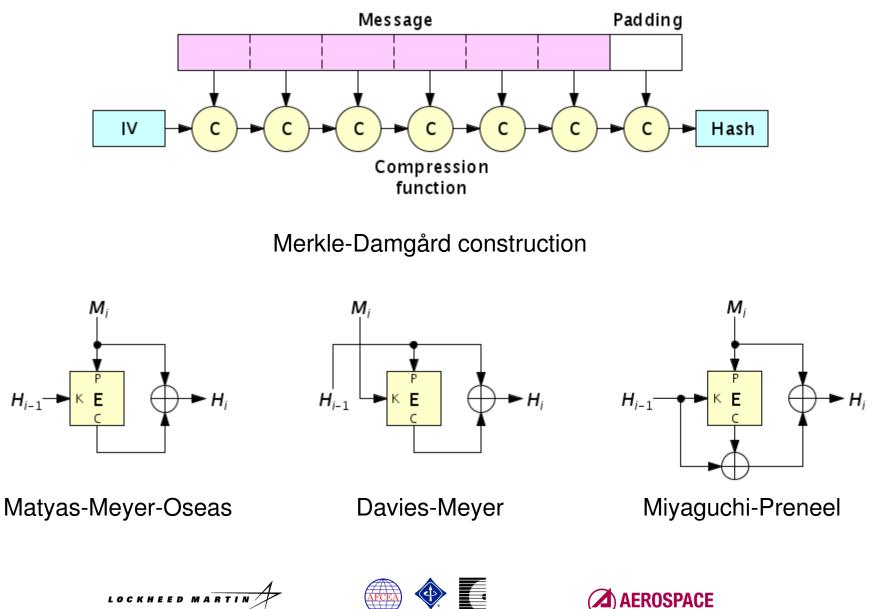
Theoretical vs. Practical Attacks


- Block cipher "break" = find the secret encryption key
- A block cipher can always be broken
 - Brute force search
 - 2^n operations, n = number of key bits
- Secure against attack X
 - Attack X needs more than 2ⁿ operations
- Theoretical break
 - Attack X needs fewer than 2ⁿ operations
 - But the time required is too long to be useful
- Practical break
 - Attack X needs fewer than 2ⁿ operations
 - And the time required is short enough to be useful
- How short is short enough?
 - Military secrets: 50 years



Block Cipher Usage: Encryption

Electronic codebook (ECB) mode


Cipher block chaining (CBC) mode

Block Cipher Usage: Hashing

AES Attacks

Brute Force Attacks

- June 2010 TOP500 List (www.top500.org)
- World's fastest supercomputer: ORNL's Jaguar
 - 224,162 cores (2.6 GHz six-core Opteron chips)
 - 1.759 petaflops Linpack performance (1,759,000 gigaflops)
- 1,000-fold performance improvement per decade

Brute Force Attacks

Assume

MILCOM

- 1 AES encryption = 200 floating point operations
- Top supercomputer brute force attack today
 - 2^n encryptions × 200 flop/encryption ÷ 1.76x10¹⁵ flop/sec
 - AES-128: 3.87×10^{25} sec = 1.23×10^{18} years
 - AES-192: 7.13×10^{44} sec = 2.26×10^{37} years
 - AES-256: 1.32×10^{64} sec = 4.17×10^{56} years
- Top supercomputer brute force attack in 2060
 - 2^n encryptions × 200 flop/encryption ÷ 1.76x10³⁰ flop/sec
 - AES-128: 3.87×10^{10} sec = 1.23×10^{3} years
 - AES-192: 7.13×10^{29} sec = 2.26×10^{22} years
 - AES-256: 1.32×10^{49} sec = 4.17×10^{41} years
- AES prognosis: Safe

MILCOM

Linear and Differential Attacks

- Cryptanalytic attacks known before AES was invented
 - Linear attack
 - Differential attack
 - Boomerang attack
 - Truncated differential attack
 - Square attack
 - Interpolation attack
- AES was designed to be secure against all these attacks
 - Differential attack breaks AES reduced to 8 rounds
 - AES-128 was therefore designed with 10 rounds
 - Security margin: 20%
- AES prognosis: Safe, but ...
 - Small security margin is troubling

Algebraic Attacks

- AES can be expressed as a system of quadratic equations
 - Variables are the plaintext, ciphertext, key, and internal state bits
- Such a system can be solved by linearization
 - Define new variables that are products of existing variables
 - Express original system as linear equations in the new variables
 - Add more equations so the new system has enough linearly independent equations to be solvable
 - Solve the now-linear system using, e.g., Gaussian elimination
- XL: eXtended Linearization attack (Courtois et al., 2000)
- XSL: eXtended Sparse Linearization attack (Courtois & Pieprzyk, 2002)
- Problem
 - The AES linear system is too large to solve in a practical time
- AES prognosis: Safe, but ...
 - No one has proven there isn't an efficient way to solve the AES linear system

Algebraic Attacks

- Any cipher can be expressed as a set of polynomial functions
 - Ciphertext bit $i = F_i$ (Plaintext, Key)
- Cube attack (Dinur & Shamir, 2009)
 - Requires $2^{d-1}n + n^2$ operations
 - *n* = number of key bits, *d* = degree of polynomials F_i
 - Succeeds in a practical time if degree is small enough
 - Requires only black-box access to the cipher
- Breaks reduced-round version of stream cipher Trivium
 - Trivium has a low-degree polynomial representation
- Problem
 - AES almost certainly has a too-high-degree polynomial representation
- AES prognosis: Safe

SAT Solver Attacks

- Any cipher can be represented as a Boolean expression
 - Variables are the plaintext, ciphertext, key, and internal state bits
 - Boolean expression is true if ciphertext = encrypt (plaintext, key)
- SAT solver

MILCOM

- Given a Boolean expression, finds variable values that satisfy the expression (make the expression true)
- Modern SAT solvers use sophisticated heuristics to avoid a brute force search
- Problem
 - AES Boolean expression is too large to solve in a practical time
- AES prognosis: Safe, but ...
 - SAT solvers are getting better all the time
 - Hybrid SAT solver + algebraic attacks might reduce the problem size enough to become practical
 - Little research in this area heretofore

Related-Key Attacks

Methodology

MILCOM

- Given plaintext/ciphertext pairs encrypted with two secret keys
- The keys have a known relationship, e.g., they differ in one bit
- Find the two keys
- Theoretical breaks of full AES
 - AES-192 in 2¹⁷⁶ operations; AES-256, 2¹¹⁹ (Biryukov *et al.,* 2009)
 - AES-256 in 2¹³¹ operations (Biryukov *et al.,* 2009)
- Practical breaks of reduced-round AES
 - AES-128, 8 (of 10) rounds, in 2⁴⁸ operations (Gilbert & Peyrin, 2009)
 - AES-256, 9 (of 14) rounds, in 2³⁹ operations; 10 rounds, 2⁴⁵ (Biryukov *et al.*, 2010)
- AES prognosis: Theoretically broken, but
 - This is mostly of concern for AES-based hashing, not encryption
 - A practical related-key attack on the full AES is not far off we're 80% there for AES-128

Side Channel Attacks

- Attack the AES implementation, not the AES algorithm
 - Timing analysis attacks
 - Power analysis attacks
 - Fault injection attacks
- Many AES implementations are highly susceptible
 - Especially those using table lookups
 - Secret keys can be recovered with negligible effort
- Countermeasures
 - Don't use table lookups
 - Use constant time operations (e.g., Intel's AES opcodes)
 - Algorithm masking
- AES prognosis: Broken (if poorly implemented)

Prognosis and Recommendations

MILCOM

Prognosis

- DES lasted 22 years before falling to a brute force attack
- AES (Rijndael) has lasted 11 years so far without falling
 - AES will not fall to a brute force attack
 - AES will not fall to traditional attacks (linear, differential)
 - Cracks in the AES edifice are starting to appear from new, nontraditional attacks
- In 10 more years, by 2020:
 - AES will not have fallen, but . . .
 - Enough cryptanalysis will have been published to seriously weaken AES
 - NIST will start a new competition to design the AES-2 block cipher

Recommendations

- When implementing AES, incorporate side channel attack countermeasures
- Do not use any hash function based on AES
- Do not rely on AES to keep military grade secrets secure for more than the next 50 years
- Plan to replace AES with AES-2 in about 10 years

