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Abstract

We discuss some of our favorite open questions about Ramsey numbers and a
related problem on edge Folkman numbers. For the classical two-color Ramsey
numbers we first focus on constructive bounds for the difference between consecu-
tive Ramsey numbers. We present the history of progress on the Ramsey number
R(5, 5) and discuss the conjecture that it is equal to 43. For the multicolor Ramsey
numbers we focus on the growth of Rr(k), in particular for k = 3. Two concrete
conjectured cases, R(3, 3, 3, 3) = 51 and R(3, 3, 4) = 30, are discussed in some detail.
For Folkman numbers, we present the history, recent developments and potential fu-
ture progress on Fe(3, 3; 4), defined as the smallest number of vertices in any K4-free
graph which is not a union of two triangle-free graphs. Although several problems
discussed in this paper are concerned with concrete cases, and some involve sig-
nificant computational approaches, there are interesting and important theoretical
questions behind each of them.

Keywords: Ramsey numbers, Folkman numbers
AMS classification subjects: 05C55

1 Introduction and Notation

In 2005, Arnold [4] wrote: From the deductive mathematics point of view most of these
results are not theorems, being only descriptions of several millions of particular obser-
vations. However, I hope that they are even more important than the formal deductions
from the formal axioms, providing new points of view on difficult problems where no other
approaches are that efficient. The paper appeared in the Journal of Mathematical Fluid
Mechanics, and it has not much to do with Ramsey theory. Yet, the motivation of our
paper is somewhat similar in that we may seem to focus much on concrete cases. Although
several problems in this paper are concerned with concrete cases, and some involve signifi-
cant computational approaches, there are interesting and important theoretical questions
behind each of them.

We obviously also try to look further for general results, but we don’t want to skip
observing what is happening with the basic small open cases. Understanding them better
may lead to surprising general conclusions. For example, our work on an old construc-
tion for R4(6) a decade ago, recently led to interesting general connections between our
methods and the Shannon capacity [78] discussed in Section 3.1.

The standard reference for Ramsey theory is a great book by Graham, Rothschild and
Spencer [39], “Ramsey Theory”. The subject first concerned mathematical logic, but over
the years found its way into several areas of mathematics, computing, and other fields.
For the discussion of numerous applications see the survey paper by Rosta [66], and a very
useful website by Gasarch [31]. There is also a colorful book by Soifer [72] on the history
and results in Ramsey theory, followed by a collection of essays and technical papers based

2



on presentations from the 2009 Ramsey theory workshop at DIMACS [73]. A regularly
updated survey of the most recent results on the best known bounds on various types of
Ramsey numbers is maintained by the second author [63].

The most important operation involved in the concept of Ramsey and Folkman num-
bers is that of arrowing, which is defined as follows.

Definition 1.1 Arrowing
Graph F arrows graphs G1, ..., Gr, written F → (G1, ..., Gr), if and only if every r-coloring
of the edges of F contains a monochromatic copy of Gsi in color i, for some 1 ≤ i ≤ r.

The definition of the classical two-color Ramsey numbers can be stated in terms of
the arrowing relation as R(s, t) = min{n | Kn → (Ks, Kt)}, with a straightforward
generalization for more colors and noncomplete graphs. If all graphs Gi are the same G,
we will use notation Rr(G) for R(G1, ..., Gr), and if the graphs Gi are complete we will
write si = |V (Gi)| instead of Gi. So for example, R(5, 5) = R(K5, K5), and Rr(3) is the
smallest n such that the r-color arrowing Kn → (K3, ..., K3) holds. The latter two cases
are discussed in detail in Sections 2.2 and 3, respectively.

Ramsey proved a theorem which implies the following.

Theorem 1.2 Ramsey 1930 [65]
For r ≥ 1 and all graphs G1, ..., Gr, the Ramsey number R(G1, ..., Gr) exists.

Any edge r-coloring witnessing Kn 6→ (G1, ..., Gr) will be called a (G1, ..., Gr)- or
(G1, ..., Gr;n)-coloring. Clearly, constructing any (G1, ..., Gr;n)-coloring implies a lower
bound n < R(G1, ..., Gr).

In the case of two colors, we will talk about (G,H)- and (G,H;n)-graphs, which are
simply (G,H;n)-colorings of Kn, where the first color is interpreted as the graph, while
the second as its complement. Let α(F ) denote the independence number of graph F .
Note that R(s, t) can be defined equivalently as the smallest integer n such that every
graph on n vertices contains Ks or has independence α(F ) ≥ t. An (s, t)-graph G will be
called Ramsey-critical (for (s, t)) if it has R(s, t)−1 vertices, i.e. it is an (s, t;R(s, t)−1)-
graph. δ(G) and ∆(G) will denote the minimum and maximum degree in G, respectively,
and Kn−e is the complete graph on n vertices with one edge removed. We will sometimes
write n(G) = |V (G)| for the number of vertices in G.

Next, we define the set of edge Folkman graphs by

Fe(s, t; k) = {F | F → (s, t) and Kk 6⊆ F}.

Then, the corresponding edge Folkman number Fe(s, t; k) is the smallest order n(F ) of
any graph F in Fe(s, t; k). Folkman proved that these graphs exist, as follows.

Theorem 1.3 Folkman 1970 [28]
If k > max(s, t), then Fe(s, t; k) exist.
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Edge Folkman numbers have obvious generalizations to arrowing graphs other than
complete, and to more colors as in Fe(s1, ..., sr; k) and Fe(s1, ..., sr; k) [58]. One can also
color vertices instead of edges, which leads to the so-called vertex Folkman numbers. In
general, much less is known about edge Folkman numbers than for more studied vertex
Folkman numbers [17]. Here, however, we will discuss only the case of Fe(3, 3; k), in
Section 4.

The problem of deciding whether a graph F arrows triangles, that is whether G →
(3, 3), is of particular interest in Ramsey theory. This is coNP-complete, and it appeared
in the classical complexity text by Garey and Johnson in 1979 [32]. Some related Ramsey
graph coloring problems are NP-hard or lie even higher in the polynomial hierarchy. For
example, Burr [8, 9] showed that arrowing (3, 3) is coNP-complete together with other
results about arrowing, and Schaefer [68] showed that for general graphs F , G, and H,
F → (G,H) is ΠP

2 -complete.

2 Two-color Ramsey Numbers

2.1 Difference and Connectivity

The estimates of the difference between consecutive (in various meanings) Ramsey num-
bers are difficult. What we know, most of the time gives weaker bounds from what we
seem to observe.

Problem 2.1.1 Erdős-Sós 1980 [19, 13]
Let ∆k = R(3, k)−R(3, k − 1). Is it true that

∆k
k→∞ ? ∆k/k

k→ 0 ?

Only easy bounds 3 ≤ ∆k ≤ k are known. The upper bound k is obvious since
the maximum degree of (3, k)-graphs is at most k − 1. The lower bound of 3 looks
misleadingly simple, it is not trivial (Theorems 2.1.2 and 2.1.3 imply it). It was argued in
[35] that better understanding of ∆k may come from the study of R(K3, Kk − e) relative
to R(K3, Kk) = R(3, k), since

∆k =
(
R(K3, Kk)−R(K3, Kk − e)

)
+
(
R(K3, Kk − e)−R(K3, Kk−1)

)
.

Recent progress on what we know for small cases is significant [34, 35], however still some
very simple-looking questions remain open. For example, we do not even know for certain
whether R(K3, Kk − e)−R(K3, Kk−1) is positive for all large k.

The following three theorems were proved by constructive methods as parts of Theo-
rems 2 and 3 in [81], and Theorem 9 in [80].
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Theorem 2.1.2 [81] Given a (k, s)-graph G and a (k, t)-graph H, for some k ≥ 3 and
s, t ≥ 2, if both G and H contain an induced subgraph isomorphic to some Kk−1-free graph
M , then R(k, s+ t− 1) ≥ n(G) + n(H) + n(M) + 1.

Theorem 2.1.3 [81] If 2 ≤ s ≤ t and k ≥ 3, then

R(k, s+ t− 1) ≥ R(k, s) +R(k, t) +

{
k − 3, if s = 2;

k − 2, if s ≥ 3.

The first inequality of Theorem 2.1.3 for s = 2, R(k, t + 1) ≥ R(k, t) + 2k − 3, was
proved by Burr et al. in 1989 [10].

Theorem 2.1.4 [80] If k ≥ 2, s ≥ 5, then R(2k − 1, s) ≥ 4R(k, s− 1)− 3.

We think that the progress on constructive lower bounds illustrated in Theorems 2.1.2–
2.1.4 is quite representative for the area, but it seems slow. Much slower than it was once
anticipated by Erdős, Faudree, Schelp and Rousseau. In 1980, Paul Erdős wrote in [19],
page 11 (using r for our R): Faudree, Schelp, Rousseau and I needed recently a lemma
stating

lim
n→∞

r(n+ 1, n)− r(n, n)

n
=∞ (a)

We could prove (a) without much difficulty, but could not prove that r(n+ 1, n)− r(n, n)
increases faster than any polynomial of n. We of course expect

lim
n→∞

r(n+ 1, n)

r(n, n)
= C

1
2 , (b)

where C = limn→∞ r(n, n)1/n.

Based on the above theorems and considerations in [79], the best known lower bound
estimate for the difference in (a) seems to be barely Ω(n). Asking others, including
collaborators of Erdős, did not lead us to any proof of this result, leaving however some
possibility that Erdős knew it. In summary, we think that it is reasonable to consider (a)
to be only a conjecture.

Beveridge and Pikhurko in [5], using Theorem 2.1.3, proved that the connectivity
of any (k, s;R(k, s) − 1)-graph, i.e. Ramsey-critical (k, s)-graph, is at least k − 1 for
all k, s ≥ 3. In Theorem 8 of [79], we increased this bound on connectivity to k for
k ≥ 5, and then we obtained further results about which Ramsey-critical graphs must be
Hamiltonian.

Theorem 2.1.5 [79] If k ≥ 5 and s ≥ 3, then the connectivity of any (k, s;R(k, s)− 1)-
graph is at least k. Furthermore, if k ≥ s− 1 ≥ 1 and k ≥ 3, except (k, s) = (3, 2), then
any (k, s;R(k, s)− 1)-graph is Hamiltonian.
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In particular, all diagonal Ramsey-critical (k, k)-graphs are Hamiltonian for every
k ≥ 3. It remains an open question for which k and s, when 3 ≤ k < s − 1, Ramsey-
critical (k, s)-graphs are still Hamiltonian. We think that the answer is positive at least
in the cases when s− k is small.

Conjecture 2.1.6 For all k ≥ 2, there exists a Ramsey-critical (k + 1, k)-graph with
maximum degree at least R(k + 1, k)/2− 1.

This conjecture seems weak, but we still have no idea how to prove or disprove it. Many
would even readily agree with an intuition that any Ramsey-critical (k + 1, k)-graph G
satisfies the bound ∆(G) ≥ |V (G)|/2. On the other hand, we clearly have ∆(G) < R(k, k).
Putting it together with the classical bound R(k + 1, k + 1) ≤ 2R(k + 1, k), we propose
the next conjecture.

Conjecture 2.1.7 R(k + 1, k) ≤ 2R(k, k) and R(k + 1, k + 1) ≤ 4R(k, k).

By the comments above, a yes answer to Conjecture 2.1.6 implies a yes for Conjecture
2.1.7. We note that a very similar inequality, R(k + 1, k + 1) ≤ 4R(k + 1, k − 1) + 2,
was proved by Walker [75] in 1968. There are straightforward generalizations of these
thoughts to other close-to-diagonal cases and to more than two colors, but we stop short
of proposing them as conjectures.

2.2 On the Ramsey number R(5, 5)

What is the largest number of vertices in any K5-free graph with independence number
less than 5? The answer is R(5, 5) − 1. The values of R(s, t) are known for all s and t
with s+ t < 10 [63], so in this sense R(5, 5) is the smallest open case in Ramsey theory.

The progress of knowledge about lower and upper bounds on R(5, 5) first spanned more
than three decades, then it apparently stopped in 1997. What we know now is almost
the same as 17 years ago, while a significant gap between bounds remains unchanged.
The effort required to lower the upper bound on R(5, 5) from 50 down to 49 was very
significant, but still 49 is quite far from the best known lower bound of 43, which was
obtained by Exoo in 1989 [22].

Theorem 2.2.1 [22] 43 ≤ R(5, 5) ≤ 49 [57].

The history of bounds on R(5, 5) is presented in Table 1. None of the results in
references listed until 1973 depended in a significant way on computer algorithms. All
of the later items involved at least some computational components to the degree that
their full verification by hand seems infeasible. Note that Table 1 stops the listing in
1997. It is not the case that people did not try since then. We are aware of several
such attempts, but it seems that none of them was finally published. The constructions
allegedly improving on the lower bound of 43, which we have seen, each contained an
error. A few attempts to improve the upper bound tried to derive some properties of,
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say, (5, 5; 45)-graphs, however we are not aware of any recognized and significant results
in this direction.

year reference lower upper comments

1965 Abbott [1] 38 quadratic residues in Z37

1965 Kalbfleisch [43] 59 pointer to a future paper
1967 Giraud [33] 58 combinatorics, LP
1968 Walker [75] 57 combinatorics, LP
1971 Walker [76] 55 combinatorics, LP
1973 Irving [42] 42 sum-free sets
1989 Exoo [22] 43 simulated annealing
1992 McKay-Radziszowski [54] 53 (4, 4)-graph enumeration, LP
1994 McKay-Radziszowski [55] 52 LP, computation
1995 McKay-Radziszowski [56] 50 implication of R(4, 5) = 25
1997 McKay-Radziszowski [57] 49

Table 1. The history of bounds on R(5, 5), based on [57]

(LP refers to linear programming techniques)

In 1997, McKay and the second author [57] posed the following conjecture.

Conjecture 2.2.2 R(5, 5) = 43, and the number of (5, 5; 42)-graphs is precisely 656.

The authors of [57] provided some strong evidence for its correctness. Of particular
strength seems to be the fact that a few distinct methods to generate (5, 5; 42)-graphs
ended up in the same final set of 656 graphs. 328 of these graphs, with the number of
edges ranging from 423 to 430, are posted at a website by McKay [52], the other 328 on
at least 431 edges are their complements. All of the 656 graphs have the minimum degree
19 and maximum degree 22. The automorphism groups of these graphs are surprisingly
small; none has order larger than 2, or more precisely 232 are involutions without fixed
points, and the remaining 424 groups are trivial. This is somewhat against an intuition
that complete sets of extreme graphs for typical Ramsey cases should contain some graph
with a larger automorphism group. We note, however, that graphs with more symmetries
in general are easier to find, and thus we think that any such (5, 5; 42)-graph would have
been already found if it existed.

In 2014, McKay and Lieby [53] provided the following new evidence for Conjecture
2.2.2, which required a computational effort of about 9 CPU years. Define the distance
between two graphs on n vertices to be k if their largest common induced subgraph has
n − k vertices. McKay and Lieby report that any new (5, 5; 42)-graph H would have to
be in distance at least 6 from every graph in the set of 656 known (5, 5; 42)-graphs.

Some improvement of the upper bound in Theorem 2.2.1 might be possible, but we
consider that lowering it even just by 1 would be a great accomplishment.
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Although the authors of this work share their ideas on most problems presented herein,
there is an exception in our positions on the so-called almost regular Ramsey graphs, and
in consequence on Conjecture 2.2.2. A graph G is almost regular if ∆(G) − δ(G) ≤ 1.
The following Conjecture 2.2.3 on almost regular Ramsey graphs was proposed by the first
author, who explored it with Zehui Shao and Linqiang Pan in 2008. Shao’s computational
work in this direction appears in his thesis [70], but otherwise was not published.

Conjecture 2.2.3 For all positive s and t, and every 1 ≤ n < R(s, t), there exists an
almost regular (s, t;n)-graph.

Needless to say, no counterexample to Conjecture 2.2.3 is known. However, since none
of the 656 known (5, 5; 42)-graphs is almost regular, hence if Conjecture 2.2.2 holds then
Conjecture 2.2.3 is false. The first author supports Conjecture 2.2.3, but not Conjecture
2.2.2, while the second author supports Conjecture 2.2.2 and thus not Conjecture 2.2.3,
unless the latter is restated only for sufficiently large s and t.

2.3 Constructive lower bounds for R(3, k)

In 1995, Kim [46] obtained a breakthrough result establishing the asymptotics of R(3, k)
up to a multiplicative constant, when he raised the lower bound to match the upper
bound.

Theorem 2.3.1 [46] R(3, k) = Θ(k2/ log k).

Recently, in independent work by Bohman and Keevash [7] and by Fiz, Griffiths and
Morris [26], an impressive further progress has been obtained in closing on the actual
constants of Theorem 2.3.1.

Theorem 2.3.2 [7, 26]
(
1
4

+ o(1)
)
k2/log k ≤ R(3, k) ≤ (1 + o(1))k2/log k [71].

The progress on asymptotic lower bounds for R(3, k) was obtained by the probabilistic
method [74, 46, 7, 26], which often yields very weak bounds for concrete small cases. The
upper bound of Theorem 2.3.2 is implicit in [71]. The best specific constructions are usu-
ally obtained by insight, computations and ad hoc means. We lack general constructions
which give both clear structure of the graphs and good Ramsey lower bound. One of the
most known and elegant constructions is a recursive method by Chung, Cleve and Dagum
from 1993 [12]. We present an instance of it in Figure 1 below.

Let G be a triangle-free graph on n vertices with independence α(G) = k, i.e. G is a
(3, k+ 1;n)-graph. Consider graph H, called a fibration of G, formed by 6 disjoint copies
of G with two types of edges joining them (see Figure 1), as described in [12]. Chung et
al. proved that their construction produces a (3, 4k + 1; 6n)-graph H, which easily gives
R(3, 4k + 1) ≥ 6R(3, k + 1) − 5. By solving the recurrence one obtains the asymptotic
lower bound R(3, k) = Ω(klog 6/ log 4) ≈ Ω(k1.29).
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G

G

G

G

G

H

Figure 1: Construction of a (3, 9; 30)-graph H using C5 as a (3, 3; 5)-graph G, for k = 2.

Other explicit constructions for R(3, k) leading to a better lower bound Ω(k3/2) were
presented by Alon in 1994 [2], and Codenotti, Pudlák and Resta in 2000 [15]. In 2010,
Kostochka, Pudlák and Rödl [47] improved further known constructive lower bounds for
R(k, n) for fixed 4 ≤ k ≤ 6, but their results still lagged behind those obtained by the
probabilistic method. For example with k = 4, the probabilistic K4-free process used by
Bohman yields R(4, n) = Ω(n5/2/ log2 n) [6], while the constructive approach of [47] gives
only R(4, n) = Ω(n8/5).

Challenge 2.3.3 Design a recursive lower bound construction of (3, k;n)-graphs for
R(3, k), with the number of vertices n larger than Ω(k3/2).

3 Multicolor Ramsey Numbers

Using elementary methods in 1955, Greenwod and Gleason [40] established that for the
multicolor Ramsey numbers, for all ki ≥ 2 and r ≥ 2, we have

R(k1, . . . , kr) ≤ 2− r +
r∑

i=1

R(k1, . . . , ki−1, ki − 1, ki+1, . . . , kr), (1)

with strict inequality if the right hand side of (1) is even and the sum has an even term.
The bound (1) reduces to the classical two-color upper bound for r = 2. There are only
two known multicolor cases (r ≥ 3), for the parameters (3,3,3,3) and (3,3,4), where this
bound was improved. On the other hand, very likely the bound (1) is never tight for
r ≥ 3, except for (3,3,3). In subsections 3.2 and 3.3 we will discuss more in detail the
special cases of R4(3) = R(3, 3, 3, 3) and R(3, 3, 4), respectively.
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3.1 Constructions and limits

In 1973, Chung [11] proved constructively that Rr(3) ≥ 3Rr−1(3) + Rr−3(3) − 3, and in
1983 Chung and Grinstead [14] showed that the limit

L = lim
r→∞

Rr(3)
1
r (2)

exists, though it may be infinite.
One of the most successful techniques for deriving lower bounds on Rr(3) are con-

structions based on Schur partitions, and closely related cyclic and linear colorings. A
Schur partition of the integers from 1 to n, [1, n], is a partition into sum-free sets. The
Schur number s(r) is the maximum n for which there exists a Schur partition of [1, n] into
r sets. A simple argument gives s(r) + 2 ≤ Rr(3).

In an early work, Abbott [1] showed that s(r) > 89r/4−c log r > 3.07r. After much more
effort the exact values of s(r) have been found for 1 ≤ r ≤ 4. What we know now about
Schur numbers s(r) provides the best known lower bound of 3.199 for L, which is implied
by the lower bound of 536 on s(6). This was obtained by Fredricksen and Sweet in 2000
[27]. In Table 2, which summarizes the best known bounds on Rr(3), three lower bounds
for 5 ≤ r ≤ 7 are implied by constructions of partitions for Schur numbers. For additional
results and comments on constructive lower bounds on Rr(3) and general R(k1, · · · , kr)
see [80].

Recently, we improved a construction from [80] to one which permits to double the
number of colors in a special way, as stated in the next theorem.

Theorem 3.1.1 [78] For integers k, n,m, s ≥ 2, let G be a (k, ..., k; s)-coloring with n
colors containing an induced subcoloring of Km using less than n colors. Then

R2n(k) ≥ s2 +m(Rn(k − 1, k, . . . , k)− 1) + 1.

The Shannon capacity c(G) of a noisy channel modelled by graph G is equal to
limn→∞ α(Gn)1/n, where α(Gn) is the independence number of the n-th power of graph G
using the strong product of graphs. We proved in [78] that the construction in the proof
of Theorem 3.1.1 with k = 3 implies the following:

Theorem 3.1.2 [78] The supremum of the Shannon capacity over all graphs with inde-
pendence number 2 cannot be achieved by any finite graph power.

We also generalized Theorem 3.1.2 to graphs with bounded independence number.
The link between Shannon capacity and multicolor Ramsey numbers was first studied by
Erdős, McEliece and Taylor [21] in 1971, but it was not much exploited afterwards. As
we showed in [78], the limits involved in the definition of c(G) and L can be linked via
constructions as in Theorem 3.1.1. We note that at least three different graph products
are used in the work in this area: strong product in the definition of c(G) [69], simple
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product [1], and the so-called composition used by us in [80, 78]. Each of these products
is useful in a different way. We now propose two conjectures related to Theorem 3.1.2.

Conjecture 3.1.3 For each k ≥ 3, there does not exist any finite graph G with indepen-
dence number equal to k − 1 such that c(G) = limn→∞Rn(k)1/n.

Conjecture 3.1.4 There exists a positive integer k such that limn→∞Rn(k)1/n =∞.

The limit limn→∞Rn(k)1/n exists for each k ≥ 3 by an argument similar to that
in the proof for k = 3 [14]. What remains open is for which k this limit is infinite.
The second of these conjectures seems a little easier, if it is true. If Conjecture 3.1.3 is
false, then Lk = limn→∞Rn(k)

1
n is finite, and actually we have Lk ≤ |V (G)| where G

is a counterexample graph. Hence, a proof of Conjecture 3.1.4 would imply a proof for
Conjecture 3.1.3. We note that Conjecture 3.1.3 is not true for infinite graphs. This was
not considered in [21], but one could prove it using the same methods as in [21].

The known values and bounds on Rr(3) for small r are listed in Table 2 below. The
first open case for r = 4 is perhaps the most studied specific multicolor Ramsey number,
and we give more details about it in the next subsection. The lower bounds in Table 2
for 5 ≤ r ≤ 7 were obtained by constructions of Schur colorings.

r value or bounds references

2 6 folklore

3 17 Greenwood-Gleason 1955 [40]

4 51–62 Chung 1973 [11] – Fettes-Kramer-R 2004 [25]

5 162–307 Exoo 1994 [24] – bound (1)

6 538–1838 Fredricksen-Sweet 2000 [27] – bound (1)

7 1682–12861 Fredricksen-Sweet 2000 [27] – bound (1)

Table 2. Bounds and values of Rr(3)

3.2 On the Ramsey number R(3, 3, 3, 3)

The best known bounds on R4(3) = R(3, 3, 3, 3) are given in the next theorem, after which
we conjecture that the actual value is 51.

Theorem 3.2.1 [11] 51 ≤ R(3, 3, 3, 3) ≤ 62 [25].

Conjecture 3.2.2 R(3, 3, 3, 3) = 51.
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year references lower upper

1955 Greenwood-Gleason [40] 42 66

1967 false rumors [66]

1971 Golomb, Baumert [37] 46

1973 Whitehead [77] 50 65

1973 Chung [11], Porter cf. [11] 51

1974 Folkman [29] 65

1995 Sánchez-Flores [67] 64

1995 Kramer (no computer) [48] 62

2004 Fettes-Kramer-R (computer) [25] 62

Table 3. History of bounds on R4(3), based on [25]

We first overview the history of the upper bounds. The bound of 66 follows from
(1) and R3(3) = 17 [40]. The result R(3, 3, 3, 3) ≤ 65 appeared first in a 1973 paper
by Whitehead [77], although he gives credit for part of the proof to Folkman. Notes
by Folkman were printed posthumously in 1974 [29]. No progress was made on lower-
ing further the upper bound until Sánchez-Flores [67] gave a computer-free proof that
R(3, 3, 3, 3) ≤ 64. In his 1995 article, Sánchez-Flores proved some properties of 3- and
4-colorings of Kn without monochromatic triangles, and then used them to derive the new
upper bound. In 1994, Kramer [48] gave a series of talks at a graph theory seminar at
Iowa State University to show that R(3, 3, 3, 3) ≤ 62. These talks led to a 116 pages long
unpublished manuscript [48], which provided the spark to develop the algorithms for the
computational verification of this result in [25]. We consider it feasible to decide whether
R(3, 3, 3, 3) ≤ 61 with the techniques similar to those in [25], however we also consider
that going down to 60 or less would necessarily require a significantly new insight.

Between 1955 and 1973 the best known lower bound was moving from 42 to 51 as
listed in Table 3. In her 1973 article, Chung took an incidence matrix for one of the
two proper 3-colorings of K16 and constructed from it the incidence matrix corresponding
to a good 4-coloring of K50, thereby establishing R(3, 3, 3, 3) > 50. Actually, this is a
special case of the general construction by Chung for any number of colors, mentioned at
the opening of subsection 3.1. To date it gives the best known lower bound for 4 colors.
Many other nonisomorphic proper 4-colorings of K50 were obtained by the second author,
though all of them had the structure very similar to the one constructed by Chung, in
that all of them have significantly less edges in one of the colors. We summarize all these
developments in Table 3.

We are aware of several attempts to use heuristic algorithms for the lower bound,
which had a hard time to produce correct constructions for the number of vertices well
below 50. Actually, we consider that designing a general heuristic method which can come
close to, match, or perhaps even beat the Chung’s bound is an interesting challenge for
the computationally oriented approach. There exists a very large number of 4-colorings
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of Kn without monochromatic triangles for n equal to 49 or slightly less, yet the stan-
dard heuristic search techniques somehow fail to find them. Understanding why this is
happening could give new insights on how to design better general search techniques.

3.3 On the Ramsey number R(3, 3, 4)

In the multicolor case, when only complete graphs are avoided, the only known nontrivial
value of such type of Ramsey number is R(3, 3, 3) = 17 [40]. The only other case whose
evaluation does not look hopeless is R(3, 3, 4), which currently is known to be equal to 30
or 31. The lower bound 30 ≤ R(3, 3, 4) was obtained by Kalbfleisch in 1966 [44], while
the best known upper bound R(3, 3, 4) ≤ 31 by Piwakowski and the second author [60] in
1998. The same authors obtained some further constraints on the final outcome in 2001
[61]. We are not aware of any further progress on this case since then. Perhaps it is time
to attack it again.

Conjecture 3.3.1 [60, 61] R(3, 3, 4) = 30.

It is known that if R(3, 3, 4) = 31, then any witness (3, 3, 4; 30)-coloring must be very
special. The known results of [43, 44, 60, 61], all obtained with the help of computer
algorithms, are summarized in the next three theorems. For edge coloring C of Kn, the
set C[k] consists of the edges in color k.

Theorem 3.3.2 [43, 60] 30 ≤ R(3, 3, 4) ≤ 31, and R(3, 3, 4) = 31 if and only if there
exists a (3, 3, 4; 30)-coloring C such that every triangle T ⊂ C[3] has a vertex x ∈ T
with degC[3](x) = 13. Furthermore, C has at least 14 vertices v such that degC[1](v) =
degC[2](v) = 8 and degC[3](v) = 13.

Theorem 3.3.3 [61] R(3, 3, 4) = 31 if and only if there exists a (3, 3, 4; 30)-coloring C
such that every triangle T ⊆ C[3] has at least two vertices x, y ∈ T with degC[3](x) =
degC[3](y) = 13.

Theorem 3.3.4 [61] R(3, 3, 4) = 31 if and only if there exists a (3, 3, 4; 30)-coloring C
such that every edge in the third color has at least one endpoint x with degC[3](x) = 13.
Furthermore, C has at least 25 vertices v such that degC[1](v) = degC[2](v) = 8 and
degC[3](v) = 13.

Further elimination of all vertices of degree at least 14 in the third color, on triangles
in the third color, is perhaps within the reach of feasible computations. Unfortunately,
we don’t know of any approach which likely could be efficient enough to proceed similarly
as in [60, 61] for the remaining cases (including a 13-regular graph in the third color).

If you like this type of problems and wish to attack R(3, 3, 4), we would recommend
to try first a somewhat similar case of R3(K4 − e). This is almost certainly easier than
R(3, 3, 4), but still difficult enough to pose a serious computational challenge. The best
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known bounds are [23] 28 ≤ R3(K4 − e) = R(K4 − e,K4 − e,K4 − e) ≤ 30 [59]. With
some new approach, and a lot of good luck, it might be even possible to solve this case
without the help of intensive computations.

Finally, we note that the Ramsey numbers of the form R(3, 3, k) are special since their
asymptotics is known up to a poly-log factor. A surprising result by Alon and Rödl from
2005 [3] implies that R(3, 3, k) = Θ(k3poly-log k). They actually prove a more general
result that for every fixed number of colors r ≥ 2, when we avoid triangles in the first
r − 1 colors and Kk in color r, we have R(3, . . . , 3, k) = Θ(krpoly-log k).

4 Edge Folkman Numbers

In 1967, Erdős and Hajnal [20] posed a problem asking for a construction of a K6-free
graph G whose every coloring of the edges with two colors contains a monochromatic
triangle. The proposers also expected (but didn’t prove it) that for every number of colors
r there is a K4-free graph G whose every coloring of the edges with r colors contains a
monochromatic triangle. The latter for r = 2 reduces to the question: Does there exist
a K4-free graph that is not a union of two triangle-free graphs? In 1970, Folkman [28]
proved a general result implying that such graphs exist, but far from providing their
effective construction. We recommend chapter 27 in a book by Soifer [72] for an earlier,
alternate and complementary perspective on problems discussed in this section.

Using notation from Section 1, we wish to understand the structure of the graphs
in the set Fe(s, t; k), and in particular those with the smallest number of vertices which
define the value of the corresponding Folkman number Fe(s, t; k). Much work has been
done for the general cases, but here we concentrate mainly on the simplest looking, but
already difficult case of arrowing triangles, namely for s = t = 3.

The state of knowledge about the cases Fe(3, 3; k) is summarized in Table 4 below. It is
easy to see that k > R(s, t) implies Fe(s, t; k) = R(s, t), which gives the first row. Graham
[38] found that C5+K3 → (3, 3), which solved the first question by Erdős and Hajnal, and
it gives the second row with k = 6. The next entry for k = 5, after numerous papers on
this case, was finally completed in 1999 by Piwakowski, Urbański and the second author
[62] who used significant help of computer algorithms. The case of k = 4 is the hardest
and still open. The known bounds are stated in Theorem 4.1 below. We expect that any
further improvements to these bounds can be very hard to obtain. We discuss Fe(3, 3; 4)
more in detail in the remainder of this section.

Theorem 4.1 [64] 19 ≤ Fe(3, 3; 4) ≤ 786 [49].
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k Fe(3, 3; k) graphs references

≥ 7 6 K6 folklore
6 8 C5 +K3 Graham 1968 [38]
5 15 659 graphs P-R-U 1999 [62]
4 19–786 see Table 5 2007 [64], 2014 [49]

Table 4. Edge Folkman numbers Fe(3, 3; k)

The history of events and progress on Fe(3, 3; 4) is summarized in Table 5 starting with
Erdős and Hajnal’s [20] original question. The positive answer follows from a theorem by
Folkman [28] proved in 1970, which when instantiated to 2 colors produces a very large
upper bound for Fe(3, 3; 4). In 1975, Erdős [18] offered $100 (or 300 Swiss francs) for
deciding if Fe(3, 3; 4) < 1010, which later resulted to be remarkably close to what can be
obtained by using probabilistic methods. This question remained open for over 10 years.
Frankl and Rödl [30] nearly met Erdős’ request in 1986 when they showed that Fe(3, 3; 4)
< 7.02× 1011. In 1988, Spencer [74], using probabilistic techniques, proved the existence
of a Folkman graph of order 3 × 109 (after an erratum by Hovey), without explicitly
constructing it. The main idea of these probabilistic proofs [30][74] is quite simple. Any
K4-free graph G such that G→ (3, 3) proves the bound Fe(3, 3; 4) ≤ |V (G)|. How to find
such a G? First, take randomly a graph F from the set G(n, p) of all graphs on n vertices
with edge probability p, and then remove one edge from every K4 in F . The resulting
graph G is clearly K4-free and so has some probability of being the graph we need. The
difficult part is showing that this probability is positive for certain values of n and p.

In 2008, Lu [51] showed that Fe(3, 3; 4) ≤ 9697 by constructing a family of K4-free
circulant graphs and showing that some such graphs arrow (3, 3) using spectral analysis.
Dudek and Rödl [16] developed a strategy to construct new Folkman graphs by approxi-
mating the maximum cut of a related graph, and used it to improve the upper bound to
941. Lange and the authors [49] improved this bound first to 860, and then further to 786
with the MAX-CUT semidefinite programming relaxation as in the Goemans-Williamson
algorithm. The results of [49] were obtained by 2012, though its publication year is 2014.
During the 2012 SIAM Conference on Discrete Mathematics in Halifax, Nova Scotia,
Ronald Graham announced a $100 award for determining if Fe(3, 3; 4) < 100.

Conjecture 4.2 50 ≤ Fe(3, 3; 4) ≤ 94.

At the end of chapter 27 of The Mathematical Coloring Book by Soifer [72], it is stated
that a double prize of $500 was offered by the second author of this paper for proving
the bounds 50 ≤ Fe(3, 3; 4) ≤ 127. These bounds are much stronger than the best
known bounds in Theorem 4.1, but note that we are lowering further the upper bound in
Conjecture 4.2 because of Conjecture 4.4 and comments after it.
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year
lower/upper

bounds
who/what

1967 any? Erdős-Hajnal [20]

1970 exist Folkman [28]

1972 10 – Lin [50]

1975 – 1010? Erdős offers $100 for proof [18]

1986 – 8× 1011 Frankl-Rödl [30]

1988 – 3× 109 Spencer [74]

1999 16 – Piwakowski-R-Urbański, implicit in [62]

2007 19 – R-X [64]

2008 – 9697 Lu [51]

2008 – 941 Dudek-Rödl [16]

2012 – 786 Lange-R-X [49]

2012 – 100? Graham offers $100 for proof

Table 5. History of the edge Folkman number Fe(3, 3; 4)

Next, we give more details on the upper bounds obtained in recent years. Building
off other methods, Dudek and Rödl [16] showed how to construct a graph HG from graph
G, such that the maximum cut size of HG determines whether or not G → (3, 3). The
vertices of HG are the edges of G, so |V (HG)| = |E(G)|. For e1, e2 ∈ V (HG), if edges
{e1, e2, e3} form a triangle in G, then {e1, e2} is an edge in HG. Let t(G) denote the
number of triangles in G, so |E(HG)| = 3t(G). Let MC(H) denote the MAX-CUT size
of graph H.

Theorem 4.3 Dudek-Rödl 2008 [16]

G→ (3, 3) if and only if MC(HG) < 2t(G).

The intuition behind Theorem 4.3 is as follows. Any coloring of the edges G can be
seen as a partition of the vertices in HG, with two colors giving a bipartition of V (HG).
If a triangle in G is not monochromatic, then its edges are in both parts. If we treat this
bipartition as a cut, then the size of the cut counts each triangle twice for the two edges
that cross it. Since there is only one triangle in a graph that contains two given edges,
this counts the number of non-monochromatic triangles. Therefore, if there exists a cut
of size 2t(G), then it defines an edge 2-coloring of G without monochromatic triangles.
However, if MC(HG) < 2t(G), then in each coloring all three edges of some triangle are
in one part, and thus G→ (3, 3).

A benefit of converting the problem of arrowing (3, 3) to MAX-CUT is that the latter
is well-known and has been studied extensively in computer science and mathematics.
The related decision problem MAX-CUT(H, k) asks whether MC(H) ≥ k. MAX-CUT
is NP-hard and its decision problem was one of Karp’s 21 NP-complete problems [45].
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The Goemans-Williamson MAX-CUT approximation algorithm [36] is a polynomial-
time algorithm that relaxes the problem to a semidefinite program (SDP). It involves
the first use of SDP in combinatorial approximation and has since inspired a variety
of other successful algorithms. This randomized algorithm returns a cut with expected
size at least 0.878 of the optimal value. However, in our case, all that is needed is the
solution to the SDP, as it gives an upper bound on MC(H). Another often effective
method approximates MAX-CUT using minimum eigenvalue, or one can combine partial
exhaustive search with one of the approximation methods [16, 49].

Define graphs Gn,r on vertices Zn with an edge connecting x and y if and only if
x − y = αr for some nonzero α ∈ Zn. If the graph Gn,r is K4-free, then it may be a
good candidate for a witness to the upper bound of n. Using the minimum eigenvalue
method, Dudek and Rödl [16] found that the graph G941,5 is a witness of Fe(3, 3; 4) ≤ 941.
A reduction of the same graph led to a better bound 860 [49], and some modifications of
graphs considered by Lu [51] produced the best to date bound of 786 [49].

A puzzling question about triangle arrowing is however for a much smaller graph,
namely for G127,3. This graph was used by Hill and Irving [41] in 1982 to establish the
bound 128 ≤ R(4, 4, 4). About 10 years ago Exoo proposed to consider this graph for the
triangle arrowing. Since then, Exoo, us, and many others tried to decide whether G127,3

forces a monochromatic triangle if its edges are colored with two colors. As far as we are
aware, all to no avail. Nevertheless, all failed attempts build up more evidence for the
positive answer to the following.

Conjecture 4.4 Exoo, G127,3 → (3, 3).

Exoo suggested that even a 94-vertex induced subgraph ofG127,3, obtained by removing
from it 3 disjoint independent sets of order 11, may still work. If true, this would imply
Fe(3, 3; 4) ≤ 94.

One of the approaches for verifying the conjecture is by reducing {G | G 6→ (3, 3)}
to the problem 3-SAT. We map the edges E(G) to the variables of φG ∈ 3-SAT, and for
each (edge)-triangle xyz in E(G) we add to φG two clauses (x + y + z) ∧ (x + y + z).
One can easily see that G 6→ (3, 3) if and only if φG is satisfiable. Conjecture 4.4 above
is equivalent to the unsatisfiability of φG for G = G127,3. In this case the formula φG

has 2667 variables and 19558 3-clauses, two for each of the 9779 triangles. In all, this
is considered of only moderate size for the state of art SAT-solvers. Still, all of several
attempts to decide this φG by us and others failed.

The lower bound on Fe(3, 3; 4) is a challenge as well, as it is quite surprising that only
19 is the best known. Even an improvement to 20 ≤ Fe(3, 3; 4) would be a good progress.
Lin [50] obtained a lower bound of 10 in 1972 without the help of a computer. All 659
graphs on 15 vertices witnessing Fe(3, 3; 5) = 15 [62] contain K4, thus giving the bound
16 ≤ Fe(3, 3; 4). In 2007, the authors gave a computer-free proof of 18 ≤ Fe(3, 3; 4) and
improved the lower bound further to 19 with the help of computations [64]. Any proof
or computational technique improving further the lower bound of 19 very likely will be of
significant interest.
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We wish to mention an interesting open problem about a related Folkman number,
namely Fe(K4−e,K4−e; 4). Note that clearly we have Fe(3, 3; 4) ≤ Fe(K4−e,K4−e; 4).
As commented by Lu [51] in his work on Fe(3, 3; 4), he also obtained as a side result the
bound Fe(K4 − e,K4 − e; 4) ≤ 30193. The gap here between the known lower and upper
bounds is much larger than that for Fe(3, 3; 4).
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[10] S.A. Burr, P. Erdős, R.J. Faudree and R.H. Schelp, On the Difference Between
Consecutive Ramsey Numbers, Utilitas Mathematica, 35 (1989) 115–118.

[11] F.R.K. Chung, On the Ramsey Numbers N(3, 3, ..., 3; 2), Discrete Mathematics, 5
(1973) 317–321.

[12] F.R.K. Chung, R. Cleve and P. Dagum, A Note on Constructive Lower Bounds for
the Ramsey Numbers R(3, t), Journal of Combinatorial Theory, Series B, 57 (1993)
150–155.

18
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