Lower Bounds on Classical Ramsey Numbers constructions, connectivity, Hamilton cycles

Xiaodong Xu¹, Zehui Shao², Stanisław Radziszowski³

¹Guangxi Academy of Sciences Nanning, Guangxi, China

²School of Information Science & Technology Chengdu University, Sichuan, China

³Department of Computer Science Rochester Institute of Technology, NY, USA

24-th Cumberland Conference Louisville, KY, May 14, 2011

Outline

2

Previous Work

Our Contributions

- General lower bound constructions
- Connectivity of Ramsey graphs
- Hamiltonian cycles in Ramsey graphs
- Concrete lower bound constructions

3 What to do next?

- Lower bound on R(3, k) R(3, k-1)
- Find new smart constructions

Ramsey Numbers

R(G, H) = n iff
 minimal n such that in any 2-coloring of the edges of K_n
 there is a monochromatic G in the first color or a
 monochromatic H in the second color.

- 2 colorings \cong graphs, $R(m, n) = R(K_m, K_n)$
- Generalizes to k colors, $R(G_1, \dots, G_k)$
- Theorem (Ramsey 1930): Ramsey numbers exist

Bounds (Erdős 1947, Spencer 1975, Thomason 1988)

$$\frac{\sqrt{2}}{e} 2^{n/2} n < R(n,n) < \binom{2n-2}{n-1} n^{-1/2+c/\sqrt{\log n}}$$

Newest upper bound (Conlon, 2010)

$$R(n+1,n+1) \leq \binom{2n}{n} n^{-c \frac{\log n}{\log \log n}}$$

• **Conjecture** (Erdős 1947, \$100) $\lim_{n\to\infty} R(n,n)^{1/n}$ exists. If it exists, it is between $\sqrt{2}$ and 4 (\$250 for value).

Asymptotics Ramsey numbers avoiding K₃

• Recursive construction yielding $R(3, 4k + 1) \ge 6R(3, k + 1) - 5$ $\Omega(k^{\log 6/\log 4}) = \Omega(k^{1.29})$

Chung-Cleve-Dagum 1993

- Explicit Ω(k^{3/2}) construction
 Alon 1994, Codenotti-Pudlák-Giovanni 2000
- Kim 1995, lower bound
 Ajtai-Komlós-Szemerédi 1980, upper bound
 Bohman 2009, triangle-free process

$$R(3,k) = \Theta\left(\frac{k^2}{\log k}\right)$$

Off-Diagonal Cases

- McKay-R 1995, *R*(4,5) = 25
- Bohman triangle-free process 2009

$$R(4,n) = \Omega(n^{5/2}/\log^2 n)$$

 Kostochka, Pudlák, Rődl - 2010 constructive lower bounds

 $R(4, n) = \Omega(n^{8/5}), R(5, n) = \Omega(n^{5/3}), R(6, n) = \Omega(n^2)$

(vs. probabilistic 5/2, 6/2, 7/2 with /logs)

Values and Bounds on R(k, I)

two colors, avoiding cliques

ı	З	4	5	6	7	8	9	10	11	12	13	14	15
k				a (a									
3 6	6	9	14	18	23	28	36	40	46	52	59	66	73
	6							43	51	59	69	78	88
4		18	05	35	49	56	73	92	97	128	133	141	153
			25	41	61	84	115	149	191	238	291	349	417
5	9 <u>3</u> 3		43	58	80	101	125	143	159	185	209	235	265
			49	87	143	216	316	442	discrete.	848		1461	
6		ĺ	0 :	102	113	127	169	179	253	262	317		401
				165	298	495	780	1171	5	2566		5033	
7			с		205	216	233	289	405	416	511		
			0 :		540	1031	1713	2826	4553	6954	10581	15263	22116
8						282	317				817		861
				× 9		1870	3583	6090	10630	16944	27490	41.525	63620
9							565	580					
				s 32		8	6588	12677	22325	39025	64871	89203	5
10								798					1265
								23556		81200			distribut?

7/16 Previous Work

General lower bound constructions Connectivity of Ramsey graphs Hamiltonian cycles in Ramsey graphs Concrete lower bound constructions

General lower bound constructions aren't that good

Theorem Burr, Erdős, Faudree, Schelp, 1989 $R(k, n) \ge R(k, n-1) + 2k - 3$ for $k \ge 2, n \ge 3$ (not $n \ge 2$)

Theorem (Xu-Xie-Shao-R 2004, 2010) If $2 \le p \le q$ and $3 \le k$, then $R(k, p + q - 1) \ge 1$

$$R(k,p) + R(k,q) + \begin{cases} k-3, & \text{if } 2 = p \\ k-2, & \text{if } 3 \le p \text{ or } 5 \le k \\ p-2, & \text{if } 2 = p \text{ or } 3 = k \\ p-1, & \text{if } 3 \le p \text{ and } 4 \le k \end{cases}$$

For p = 2, n = q + 1, we have R(k, p) = k, which implies BEFR'89

General lower bound constructions Connectivity of Ramsey graphs Hamiltonian cycles in Ramsey graphs Concrete lower bound constructions

Proof by construction

Given

(k, p)-graph G, (k, q)-graph H, $k \ge 3$, $p, q \ge 2$ G and H contain induced K_{k-1} -free graph M

construct

$$(k, p + q - 1)$$
-graph F , $n(F) = n(G) + n(H) + n(M)$
 $VG = \{v_1, v_2, ..., v_{n_1}\}, VH = \{u_1, u_2, ..., u_{n_2}\}$

$$VM = \{w_1, ..., w_m\}, m \le n_1, n_2, K_{k-1} \not\subset M$$

 $G[\{v_1, ..., v_m\}], H[\{u_1, ..., u_m\}] \cong M$
 $\phi(w_i) = v_i, \psi(w_i) = u_i \text{ isomorphisms}$

$$VF = VG \cup VH \cup VM$$

$$E(G, H) = \{\{v_i, u_i\} \mid 1 \le i \le m\}$$

$$E(G, M) = \{\{v_i, w_j\} \mid 1 \le i \le n_1, 1 \le j \le m, \{v_i, v_j\} \in E(G)\}$$

$$E(H, M) = \{\{u_i, w_j\} \mid 1 \le i \le n_2, 1 \le j \le m, \{u_i, u_j\} \in E(H)\}$$

General lower bound constructions Connectivity of Ramsey graphs Hamiltonian cycles in Ramsey graphs Concrete lower bound constructions

Slow on citing this result...

In 1980, Paul Erdős wrote

Faudree, Schelp, Rousseau and I needed recently a lemma stating

$$\lim_{n\to\infty}\frac{r(n+1,n)-r(n,n)}{n}=\infty.$$

We could prove it without much difficulty, but could not prove that r(n+1,n) - r(n,n) increases faster than any polynomial of n. We of course expect

$$\lim_{n\to\infty}\frac{r(n+1,n)}{r(n,n)}=C^{\frac{1}{2}},$$

where $C = \lim_{n\to\infty} r(n, n)^{1/n}$.

The best known lower bound for (r(n+1, n) - r(n, n)) is $\Omega(n)$.

10/16 Our Contributions

General lower bound constructions Connectivity of Ramsey graphs Hamiltonian cycles in Ramsey graphs Concrete lower bound constructions

Theorem 1

If $k \ge 5$ and $l \ge 3$, then the connectivity of any Ramsey-critical (k, l)-graph is no less than k.

This improves by 1 the result by Beveridge/Pikhurko from 2008

11/16 Our Contributions

General lower bound constructions Connectivity of Ramsey graphs Hamiltonian cycles in Ramsey graphs Concrete lower bound constructions

Hamiltonian cycles in Ramsey graphs

Theorem 2

If $k \ge l - 1 \ge 1$ and $k \ge 3$, except (k, l) = (3, 2), then any Ramsey-critical (k, l)-graph is Hamiltonian.

In particular, for $k \ge 3$, all diagonal Ramsey-critical (k, k)-graphs are Hamiltonian.

General lower bound constructions Connectivity of Ramsey graphs Hamiltonian cycles in Ramsey graphs Concrete lower bound constructions

Lower bound constructions

Using the best known bounds for R(k, s) we get:

Theorem 3

$$\begin{array}{lll} R(6,12) & \geq R(6,11) + 2 \times 6 - 2 & \geq 263, \\ R(7,8) & \geq R(7,7) + 2 \times 7 - 2 & \geq 217, \\ R(7,12) & \geq R(7,11) + 2 \times 7 - 2 & \geq 417, \\ R(9,10) & \geq R(9,9) + 2 \times 9 - 2 & \geq 581, \\ R(11,12) & \geq R(11,11) + 2 \times 11 - 2 & \geq 1617, \\ R(12,12) & \geq R(12,11) + 2 \times 12 - 2 & \geq 1639. \end{array}$$

General lower bound constructions Connectivity of Ramsey graphs Hamiltonian cycles in Ramsey graphs Concrete lower bound constructions

Lower bound constructions

Theorem 4

<i>R</i> (5, 17)	\geq	388,
<i>R</i> (5, 19)	\geq	411 ,
R(5, 20)	\geq	424 ,
R(6,8)	\geq	132,
R(7,9)	\geq	241 ,
<i>R</i> (8, 17)	\geq	961,
<i>R</i> (8, 8, 8)	\geq	6079.

14/16 Our Contributions

What to do next?

Erdős and Sós, 1980, asked about
$$3 \le \Delta_k = R(3, k) - R(3, k - 1) \le k$$
: $\Delta_k \stackrel{k}{\to} \infty ? \quad \Delta_k / k \stackrel{k}{\to} 0 ?$

Challenges

- improve lower bound for Δ_k
- generalize beyond triangle-free graphs

SPR's papers to pick up

- Xu Xiaodong, Xie Zheng, SPR., A Constructive Approach for the Lower Bounds on the Ramsey Numbers R(s, t), *Journal of Graph Theory*, 47 (2004), 231–239.
- Xiaodong Xu, Zehui Shao, SPR., More Constructive Lower Bounds ... (this talk), SIAM Journal on Discrete Mathematics, 25 (2011), 394–400.
- Revision #12 of the survey paper Small Ramsey Numbers at the EIJC, August 2009. Revision #13 coming in the summer 2011 ...

