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Ramsey Numbers

R(G,H) = n iff
minimal n such that in any 2-coloring of the edges of Kn
there is a monochromatic G in the first color or a
monochromatic H in the second color.

2− colorings ∼= graphs, R(m,n) = R(Km,Kn)

Generalizes to k colors, R(G1, · · · ,Gk )

Theorem (Ramsey 1930): Ramsey numbers exist
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Asymptotics
diagonal cases

Bounds (Erdős 1947, Spencer 1975, Thomason 1988)
√

2
e

2n/2n < R(n,n) <

(
2n − 2
n − 1

)
n−1/2+c/

√
log n

Newest upper bound (Conlon, 2010)

R(n + 1,n + 1) ≤
(

2n
n

)
n−c log n

log log n

Conjecture (Erdős 1947, $100)
limn→∞R(n,n)1/n exists.
If it exists, it is between

√
2 and 4 ($250 for value).
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Asymptotics
Ramsey numbers avoiding K3

Recursive construction yielding
R(3,4k + 1) ≥ 6R(3, k + 1)− 5
Ω(k log 6/ log 4) = Ω(k1.29)

Chung-Cleve-Dagum 1993

Explicit Ω(k3/2) construction
Alon 1994, Codenotti-Pudlák-Giovanni 2000

Kim 1995, lower bound
Ajtai-Komlós-Szemerédi 1980, upper bound
Bohman 2009, triangle-free process

R(3, k) = Θ

(
k2

log k

)
5/16 Previous Work



Previous Work
Our Contributions
What to do next?

Off-Diagonal Cases
fixing small k

McKay-R 1995, R(4,5) = 25
Bohman triangle-free process - 2009

R(4,n) = Ω(n5/2/ log2 n)

Kostochka, Pudlák, Rődl - 2010
constructive lower bounds

R(4,n) = Ω(n8/5), R(5,n) = Ω(n5/3), R(6,n) = Ω(n2)

(vs. probabilistic 5/2,6/2,7/2 with /logs)

6/16 Previous Work



Previous Work
Our Contributions
What to do next?

Values and Bounds on R(k , l)
two colors, avoiding cliques

[ElJC survey Small Ramsey Numbers, revision #12, 2009]
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General lower bound constructions
Connectivity of Ramsey graphs
Hamiltonian cycles in Ramsey graphs
Concrete lower bound constructions

General lower bound constructions
aren’t that good

Theorem Burr, Erdős, Faudree, Schelp, 1989
R(k ,n) ≥ R(k ,n − 1) + 2k − 3 for k ≥ 2, n ≥ 3 (not n ≥ 2)

Theorem (Xu-Xie-Shao-R 2004, 2010)
If 2 ≤ p ≤ q and 3 ≤ k, then R(k ,p + q − 1) ≥

R(k ,p) + R(k ,q) +


k − 3, if 2 = p
k − 2, if 3 ≤ p or 5 ≤ k
p − 2, if 2 = p or 3 = k
p − 1, if 3 ≤ p and 4 ≤ k

For p = 2, n = q + 1, we have R(k ,p) = k ,
which implies BEFR’89
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General lower bound constructions
Connectivity of Ramsey graphs
Hamiltonian cycles in Ramsey graphs
Concrete lower bound constructions

Proof by construction

Given
(k ,p)-graph G, (k ,q)-graph H, k ≥ 3, p,q ≥ 2
G and H contain induced Kk−1-free graph M

construct
(k ,p + q − 1)-graph F , n(F ) = n(G) + n(H) + n(M)
VG = {v1, v2, ..., vn1}, VH = {u1,u2, ...,un2}

VM = {w1, ...,wm}, m ≤ n1,n2, Kk−1 6⊂ M
G[{v1, ..., vm}], H[{u1, ...,um}] ∼= M
φ(wi) = vi , ψ(wi) = ui isomorphisms

VF = VG ∪ VH ∪ VM
E(G, H) = {{vi , ui} | 1 ≤ i ≤ m}
E(G, M) = {{vi , wj} | 1 ≤ i ≤ n1, 1 ≤ j ≤ m, {vi , vj} ∈ E(G)}
E(H, M) = {{ui , wj} | 1 ≤ i ≤ n2, 1 ≤ j ≤ m, {ui , uj} ∈ E(H)}

.
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Slow on citing this result...

In 1980, Paul Erdős wrote

Faudree, Schelp, Rousseau and I needed recently a lemma stating

lim
n→∞

r(n + 1,n)− r(n,n)

n
= ∞.

We could prove it without much difficulty, but could not prove that
r(n + 1,n)− r(n,n) increases faster than any polynomial of n. We of
course expect

lim
n→∞

r(n + 1,n)

r(n,n)
= C

1
2 ,

where C = limn→∞ r(n,n)1/n.

The best known lower bound for
(r(n + 1,n)− r(n,n)) is Ω(n).
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Connectivity

Theorem 1

If k ≥ 5 and l ≥ 3, then the connectivity of any
Ramsey-critical (k , l)-graph is no less than k .

This improves by 1 the result by Beveridge/Pikhurko from 2008
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Hamiltonian cycles in Ramsey graphs

Theorem 2

If k ≥ l − 1 ≥ 1 and k ≥ 3, except (k , l) = (3,2),
then any Ramsey-critical (k , l)-graph is Hamiltonian.

In particular, for k ≥ 3, all diagonal Ramsey-critical
(k , k)-graphs are Hamiltonian.
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Lower bound constructions
computer-free

Using the best known bounds for R(k , s) we get:

Theorem 3

R(6,12) ≥ R(6,11) + 2× 6− 2 ≥ 263,
R(7,8) ≥ R(7,7) + 2× 7− 2 ≥ 217,

R(7,12) ≥ R(7,11) + 2× 7− 2 ≥ 417,
R(9,10) ≥ R(9,9) + 2× 9− 2 ≥ 581,

R(11,12) ≥ R(11,11) + 2× 11− 2 ≥ 1617,
R(12,12) ≥ R(12,11) + 2× 12− 2 ≥ 1639.

13/16 Our Contributions



Previous Work
Our Contributions
What to do next?

General lower bound constructions
Connectivity of Ramsey graphs
Hamiltonian cycles in Ramsey graphs
Concrete lower bound constructions

Lower bound constructions
computer help

Theorem 4

R(5,17) ≥ 388,
R(5,19) ≥ 411,
R(5,20) ≥ 424,
R(6,8) ≥ 132,
R(7,9) ≥ 241,

R(8,17) ≥ 961,
R(8,8,8) ≥ 6079.

14/16 Our Contributions



Previous Work
Our Contributions
What to do next?

What to do next?

Erdős and Sós, 1980, asked about

3 ≤ ∆k = R(3, k)− R(3, k − 1) ≤ k :

∆k
k→∞ ? ∆k/k

k→ 0 ?

Challenges
improve lower bound for ∆k

generalize beyond triangle-free graphs
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Papers

SPR’s papers to pick up

Xu Xiaodong, Xie Zheng, SPR., A Constructive Approach
for the Lower Bounds on the Ramsey Numbers R(s, t),
Journal of Graph Theory, 47 (2004), 231–239.

Xiaodong Xu, Zehui Shao, SPR., More Constructive Lower
Bounds ... (this talk), SIAM Journal on Discrete
Mathematics, 25 (2011), 394–400.

Revision #12 of the survey paper
Small Ramsey Numbers at the ElJC, August 2009.
Revision #13 coming in the summer 2011 ...
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