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Ramsey numbers avoiding C4

Ramsey Numbers

R(G, H) = n iff
minimal n such that in any 2-coloring of the edges of Kn
there is a monochromatic G in the first color or a
monochromatic H in the second color.

2− colorings ∼= graphs, R(m, n) = R(Km, Kn)

Generalizes to k colors, R(G1, · · · , Gk )

Avoiding C4, |N(v) ∩ N(u)| ≤ 1

Theorem (Ramsey 1930): Ramsey numbers exist
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Ramsey numbers avoiding C4

Asymptotics
Ramsey numbers avoiding C4

Spencer - 1977

c1

(
n

log n

)3/2

≤ R(C4, Kn)

Caro, Li, Rousseau, Zhang - 2000
credit to Erdös, Szemerédi - 1980 (unpublished)

R(C4, Kn) ≤ c2

(
n

log n

)2

Kim - 1995

R(C3, Kn) = Θ

(
n2

log n

)
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Ramsey numbers avoiding C4

Basic cases and connections

C4 versus Kn

R(C4, Kn) = 7, 10, 14, 18, 22, 26 for n = 3, · · · , 8

First open cases:
30 ≤ R(C4, K9) ≤ 32, 34 ≤ R(C4, K10) ≤ 39

This is the OTHER end of the
Erdös-Faudree-Rousseau-Schelp conjecture (1978)

R(Cn, Km) = (n − 1)(m − 1) + 1

for all n ≥ m ≥ 3
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Ramsey numbers avoiding C4

Basic cases and connections

Irving, Chung, Graham, Parsons, Lortz, Mengersen,
Monte Carmelo, and many others ...

C4 versus stars, trees, books, wheels
Connects to projective planes
Connects to Hadamard matrices
Connects to much studied case R(K2,k , Km,n)
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Ramsey numbers avoiding C4

Multicolor cases

k2 + 2 ≤ Rk (C4) ≤ k2 + k + 1
lower bound for prime power k

Irving, Chung, Graham (1970’s)
Lazebnik, Woldar, Ling, Mubayi (2000’s)

R3(C4) = 11
Bialostocki/Schönheim 1984, Clapham 1987
R4(C4) = 18
amazing computation by Sun/Yang/Lin/Zheng 2007
27 ≤ R5(C4) ≤ 29
just math, Lazebnik/Woldar 2000
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Ramsey numbers avoiding C4

Strange multicolor asymptotics

Sun/Yang/Lin/Zheng 2007 (computations)

R(C4, C4, Cn) = n + 2 for n ≥ 11
Shiu/Lam/Li 2003

c3

(
n

log n

)3/2

≤ R(C4, C4, Kn) ≤ c4

(
n

log n

)2

Alon/Rödl 2005

R(C4, C4, Kn) = Θ̃(n2)

R(C4, C4, · · · , C4, Kn) = Θ(n2)
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Three colors

R(C4, G1, G2) value/bounds reference
C4, C4, C4 11 [BiaSch]
C4, C4, C3 12 [Schul]
C4, C4, K4 19-22
C4, C3, C3 17 [ExRe]
C4, C3, K4 25-32
C4, K4, K4 52-72

Table 1. R(C4, G1, G2) for G1, G2 ∈ {C4, C3, K4}
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Four colors

R(C4, C4, G1, G2) value/bounds reference
C4, C4, C4, C4 18 [SYLZ]
C4, C4, C4, C3 21-27 [XuRad]
C4, C4, C4, K4 31-50
C4, C4, C3, C3 28-36 [XuRad]
C4, C4, C3, K4 42-76
C4, C4, K4, K4 87-179

Table 2. R(C4, C4, G1, G2) for G1, G2 ∈ {C4, C3, K4}
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Summary of old and new results
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Counting edges

Definition: t4(n) = max# edges in n-vertex C4-free graphs

Lemma: For any n-vertex C4-free graph G, n > 3,
(1) |E(G)| ≤ t(n) < 1

4n(1 +
√

4n − 3),
(2) δ(G) < 1

2(1 +
√

4n − 3).

t4(n) known for n ≤ 32, hard to go any further
R(C4, K9) ≤ 32
R(C4, C4, K4) ≤ 22
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Lower bound constructions

Two means of improving lower bounds

Explicit computer constructions
e.g. 19 ≤ R(C4, C4, K4)

Extensions of known constructions
e.g. 28 ≤ R(C4, C4, K3, K3)
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Summary

Closing in on several small cases
C4 seems easier than K3

Next tasks - compute exactly
19 ≤ R(C4, C4, K4) ≤ 22 doable
30 ≤ R(C4, K9) ≤ 32 hard
27 ≤ R5(C4) ≤ 29 very hard
Asymptotics for R(C4, Kn) nice
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Papers

SPR’s C4-papers to pick up
Kung-Kuen Tse, SPR. A Computational Approach for the
Ramsey Numbers R(C4, Kn), JCMCC 42 (2002) 195-207.
Xu Xiaodong, SPR. 28 ≤ R(C4, C4, C3, C3) ≤ 36,
to appear in Utilitas Mathematica.
Xiaodong Xu, Zehui Shao, SPR. Bounds ... (this talk),
Ars Combinatoria, 90 (2009) 337-344.

Revision #12 of the survey paper Small Ramsey Numbers
at the ElJC coming in the summer 2009 ...
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