Bounds on Some Ramsey Numbers Involving Quadrilateral

Xiaodong Xu¹ Zehui Shao² Stanisław Radziszowski³

¹Guangxi Academy of Sciences Nanning, Guangxi, China

²Huazhong University of Science and Technology Wuhan, Hubei, China

> ³Department of Computer Science Rochester Institute of Technology, NY

Ramsey numbers avoiding C_4

ALES

Ramsey Numbers

- R(G, H) = n iff minimal n such that in any 2-coloring of the edges of K_n there is a monochromatic G in the first color or a monochromatic H in the second color.
- 2 colorings \cong graphs, $R(m, n) = R(K_m, K_n)$
- Generalizes to k colors, $R(G_1, \cdots, G_k)$
- Avoiding C_4 , $|N(v) \cap N(u)| \leq 1$
- Theorem (Ramsey 1930): Ramsey numbers exist

						K · I · I Depresent of Despiter Science
			<□ > <⊡ > <	≣▶ ▲ ≣▶	1	うくで
Xu, S	Shao, Radziszowski	$R(C_4, *)$				
	Previous Work	Dama an				
	Our Contributions What to do next?	Ramsey numbe	ers avoiding C_4			
	What to do noxt.					
Asymptotics						
Ramsey numbers avoiding	C_4					

• Spencer - 1977

$$c_1\left(\frac{n}{\log n}\right)^{3/2} \leq R(C_4, K_n)$$

 Caro, Li, Rousseau, Zhang - 2000 credit to Erdös, Szemerédi - 1980 (unpublished)

$$R(C_4, K_n) \leq c_2 \left(\frac{n}{\log n}\right)^2$$

• Kim - 1995

$$R(C_3, K_n) = \Theta\left(\frac{n^2}{\log n}\right)$$

Ramsey numbers avoiding C_4

Basic cases and connections

 C_4 versus K_n

- $R(C_4, K_n) = 7, 10, 14, 18, 22, 26$ for $n = 3, \dots, 8$
- First open cases: $30 \le R(C_4, K_9) \le 32, 34 \le R(C_4, K_{10}) \le 39$
- This is the OTHER end of the Erdös-Faudree-Rousseau-Schelp conjecture (1978)

$$R(C_n, K_m) = (n-1)(m-1) + 1$$

for all $n \ge m \ge 3$

Irving, Chung, Graham, Parsons, Lortz, Mengersen, Monte Carmelo, and many others ...

- C₄ versus stars, trees, books, wheels
- Connects to projective planes
- Connects to Hadamard matrices
- Connects to much studied case $R(K_{2,k}, K_{m,n})$

Previous Work Our Contributions What to do next?	Ramsey numbers avoiding C_4
Strange multicolor asympto	otics

• Sun/Yang/Lin/Zheng 2007 (computations)

$$R(\mathit{C}_4, \mathit{C}_4, \mathit{C}_n) = \mathit{n} + \mathsf{2}$$
 for $\mathit{n} \geq \mathsf{11}$

• Shiu/Lam/Li 2003

$$c_3\left(\frac{n}{\log n}\right)^{3/2} \leq R(C_4, C_4, K_n) \leq c_4\left(\frac{n}{\log n}\right)^2$$

Alon/Rödl 2005

$$R(C_4, C_4, K_n) = \tilde{\Theta}(n^2)$$
$$R(C_4, C_4, \cdots, C_4, K_n) = \Theta(n^2)$$

	Previous Work Our Contributions What to do next?	Summary of old and new results Upper bounds Lower bounds
Three colors		

$R(C_4, G_1, G_2)$	value/bounds	reference
C_4, C_4, C_4	11	[BiaSch]
C_4, C_4, C_3	12	[Schul]
C_4, C_4, K_4	19-22	
C_4, C_3, C_3	17	[ExRe]
C_4, C_3, K_4	25-32	
C_4, K_4, K_4	52-72	

Table 1. $R(C_4, G_1, G_2)$ for $G_1, G_2 \in \{C_4, C_3, K_4\}$

			_		_	$\underline{R} \cdot \underline{I} \cdot \underline{T}$
				문 🕨 🔍 문 🕨	-2	4) Q (¥
Xu,	Shao, Radziszowski	$R(C_4, *)$				
	Previous Work	Summary of old	and new results			
	Our Contributions	Upper bounds				
	What to do next?	Lower bounds				

Four colors

$R(C_4, C_4, G_1, G_2)$	value/bounds	reference
C_4, C_4, C_4, C_4	18	[SYLZ]
C_4, C_4, C_4, C_3	21-27	[XuRad]
C_4, C_4, C_4, K_4	31-50	
C_4, C_4, C_3, C_3	28-36	[XuRad]
C_4, C_4, C_3, K_4	42-76	
C_4, C_4, K_4, K_4	87-179	

Summary of old and new results Upper bounds Lower bounds

Counting edges

Definition: $t_4(n) = \max \#$ edges in *n*-vertex C_4 -free graphs

Lemma: For any *n*-vertex C_4 -free graph G, n > 3, (1) $|E(G)| \le t(n) < \frac{1}{4}n(1 + \sqrt{4n-3}),$ (2) $\delta(G) < \frac{1}{2}(1 + \sqrt{4n-3}).$

- $t_4(n)$ known for $n \leq 32$, hard to go any further
- $R(C_4, K_9) \leq 32$
- $R(C_4, C_4, K_4) \le 22$

	<u>Ř·I·I</u> ののの 言 くぼとくぼとく む とくロと
Xu, Shao, Radziszowski	$R(C_4,*)$
Previous Work	Summary of old and new results
What to do next?	Lower bounds
Lower bound constructions	

Two means of improving lower bounds

- Explicit computer constructions
 e.g. 19 ≤ R(C₄, C₄, K₄)
- Extensions of known constructions
 e.g. 28 ≤ R(C₄, C₄, K₃, K₃)

	Previous Work Our Contributions What to do next?		
Papers			

SPR's C₄-papers to pick up

- Kung-Kuen Tse, SPR. A Computational Approach for the Ramsey Numbers R(C₄, K_n), JCMCC 42 (2002) 195-207.
- Xu Xiaodong, SPR. 28 ≤ R(C₄, C₄, C₃, C₃) ≤ 36, to appear in Utilitas Mathematica.
- Xiaodong Xu, Zehui Shao, SPR. Bounds ... (this talk), Ars Combinatoria, 90 (2009) 337-344.
- Revision #12 of the survey paper *Small Ramsey Numbers* at the EIJC coming in the summer 2009 ...