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Abstract∗

We discuss a branch of Ramsey theory concerning edge Folkman
numbers and how computer algorithms could help to solve some
problems therein. We write G→ (a1, . . . , ak; p)e if for every edge
k-coloring of an undirected simple graph G not containing Kp, a
monochromatic Kai is forced in color i for some i ∈ {1, . . . , k}.
The edge Folkman number is defined as Fe(a1, . . . , ak; p) =
min{|V (G)| : G→ (a1, . . . , ak; p)e}. Folkman showed in 1970 that
this number exists for p > max(a1, . . . , ak).

In general, much less is known about edge Folkman numbers than
the related and more studied vertex Folkman numbers, where we
color vertices instead of edges. Fe(3, 3; 4) involves the smallest
parameters for which the problem is open, namely the question,
“What is the smallest order N of a K4-free graph, for which any
edge 2-coloring must contain at least one monochromatic
triangle?” This is equivalent to finding the order N of the
smallest K4-free graph which is not a union of two triangle-free
graphs. It is known that 19 ≤ N , and it is known through a
probabilistic proof by Spencer (later updated by Hovey) that
N ≤ 3× 109. We suspect that N ≤ 127.

This talk will present the background, overview some related
problems, discuss the difficulties in obtaining better bounds on N ,
and give some computational evidence why it is very likely that
even N < 100.

∗ - slides not shown
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Outline

• Arrowing

• Folkman numbers

• Story of Fe(3, 3; 4)

• Probabilistic upper bound on Fe(3, 3; 4)

• Some general known facts about edge-

and vertex- Folkman numbers and bounds

for specific small parameters

• Complexity of arrowing

• A very special graph G127

• Can SAT-solvers help?
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Graph notation

G - simple undirected loopless graph

V (G) - vertex set of graph G

E(G) - edge set of graph G

R(s, t) - Ramsey number, the least n such

that in any 2-coloring of the edges of Kn

there is a monochromatic Ks in the first color

or a monochromatic Kt in the second color.

G(n, p) - random graph

n vertices, edge probability p

χ(G) - chromatic number of G

Kn, Pn, Cn - complete graph, path and cycle

on n vertices
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Arrowing - branch of Ramsey Theory

F, G, H - graphs, s, t, si - positive integers

Definitions

F → (s1, ..., sk)e iff for every k-coloring of the

edges of F , F contains a monochromatic

copy of Ksi in color i, for some i, 1 ≤ i ≤ k.

F → (s1, ..., sk)v iff for every k-coloring of the

vertices of F , F contains a monochromatic

copy of Ksi in color i, for some i, 1 ≤ i ≤ k.

F → (G, H)e iff for every red/blue

edge-coloring of F , F contains a red copy of

G or a blue copy of H.

Facts

R(s, t) = min{n | Kn → (s, t)e}

R(G, H) = min{n | Kn → (G, H)e}
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Warming up

G = K6 has the smallest number of vertices

among graphs which are not a union of two

K3-free graphs, since R(3, 3) = 6.

K6 → (K3, K3)e and K5 6→ (K3, K3)e

and since 43 ≤ R(5, 5) ≤ 49

K49 → (K5, K5)e and K42 6→ (K5, K5)e
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Warming up

What if we want G to be K6-free?

Graham (1968) proved that

• G = K8 − C5 = K3 + C5 → (K3, K3)

clearly, G has no K6

• |V (H)| < 8 ∧K6 6⊂ H ⇒ H 6→ (K3, K3)

(picture proof of)

K3 + C5 → (K3, K3)
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Folkman problems

edge Folkman graphs

Fe(s, t; k) = {G→ (s, t)e : Kk 6⊆ G}

edge Folkman numbers

Fe(s, t; k) = the smallest n such that there

exists an n-vertex graph G in Fe(s, t; k)

vertex Folkman graphs/numbers

2-coloring vertices instead of edges

Theorem 1. (Folkman 1970) For all

k > max(s, t), edge- and vertex- Folkman

numbers Fe(s, t; k), Fv(s, t; k) exist.
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Known values/bounds for Fe(3, 3; k)

Our goal Fe(3, 3; 4)

k Fe(3, 3; k) graphs reference

≥ 7 6 K6 folklore

6 8 C5 + K3 Graham’68

5 15 659 graphs [PRU]’99

4 ≤ 3× 109 probabilistic ’86,’88,’89

k > R(s, t)⇒ Fe(s, t; k) = R(s, t)

k ≤ R(s, t), very little known in general
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Fe(3, 3; 5) = 15 and Fv(3, 3; 4) = 14

unique 14-vertex bicritical graph G [PRU’99]

H → (3, 3; 4)v implies
H + x→ (3, 3; 5)e
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History of upper bounds on Fe(3, 3; 4)

• 1967 - Erdős, Hajnal state the problem

• 1970 - Folkman proves his theorem for 2

colors. VERY large bound for Fe(3, 3; 4).

• 1975 - Erdős offers $100 (or 300 Swiss

francs) for deciding if Fe(3, 3; 4) < 1010

• 1988 - Spencer gives a probabilistic proof

of Fe(3, 3; 4) < 3× 108

• 1989 - Hovey finds an error in Spencer’s

proof, bound up to Fe(3, 3; 4) < 3× 109

• 2007 - nothing better so far ...

• 2013 - ”Fe(3, 3; 4) < 100” is decided (?)
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History of lower bounds on Fe(3, 3; 4)

10 ≤ Fe(3, 3; 4) Lin (1972)

16 ≤ Fe(3, 3; 4) (PRU 1999)

since Fe(3, 3; 5) = 15, all graphs in Fe(3, 3; 5)

on 15 vertices are known, and all of them

contain K4’s

19 ≤ Fe(3, 3; 4) (RX 2006)

18 ≤ Fe(3, 3; 4) - proof ”by hand”

19 ≤ Fe(3, 3; 4) - computations

ANY proof technique improving on 19

very likely will be of interest

12



Lower Bound

Proof ”by hand” that 18 ≤ Fe(3, 3; 4)

• G17 critical for R(4, 4) = 18,

check that G17 6→ (3, 3; 4)e.

• G17 6≈ G→ (3, 3; 4)e, |V (G)| = 17,

G must have indset I on 4 vertices.

• G′= I + G[V (G) \ I]→ (3, 3; 5)e.

• Dropping any three vertives from I,

gives K5-free graph on 14 vertices.

• Contradiction with Fe(3, 3; 5) = 15.

Computing 19 ≤ Fe(3, 3; 4)

Quite similar, but much more work,

Use all 153 graph H ∈ Fv(3, 3; 4).
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Probabilistic construction

Frankl, Rődl, Spencer, Hovey

used graph G∗ constructed as follows:

Construction

1: input an integer n, and probability p

2: G← G(n, p)

3: remove random edge from each K4 in G

4: output G∗, the result of step 3

Sometimes G∗ → (3, 3)e

Frankl, Rődl:

very difficult probabilistic graph theory

n = 7× 1011

Spencer/Hovey:

difficult probabilistic graph theory

n = 3× 109, p = 6n−1/2 ≈ 1/9129
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Probabilistic construction∗

main proof steps

Let

U(G) = {(x, xyz) | 4xyz in G}

U∗ = U(G∗)

For each x ∈ V (G), define (maximum over all

partitions N(x) = T ∪B, T ∩ B = ∅)

A(x) = max |{yz ∈ E(G) | y ∈ T ∧ z ∈ B}|

Theorem 2. (Spencer)

∑

x∈V (G)

A(x) <
2

3
|U∗|

holds with positive probability for n = 3× 109,

p ≈ 0.00011, and |E(G)| ≈ 4× 1014.
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Probabilistic construction∗

main counting trick

Theorem 3.

If
∑

x∈V (G)

A(x) <
2

3
|U∗|

then

G∗ ∈ Fe(3, 3; 4).

Proof.

G has no K4 by construction.

Suppose f colors E(G∗) in 4-free way.

Count marked triangles (x, xyz) such that

f(xz) 6= f(xy). It is 2|U∗|/3, but also bounded

by
∑

x∈V (G) A(x). Contradiction.
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General facts on Fe(s, t; k)

• G ∈ Fe(s, t; k)⇒ χ(G) ≥ R(s, t)

no k in the bound!, easy

• Fe(s, t; k > R(s, t)) = R(s, t)

• Fe(s, t; k = R(s, t)) = R(s, t) + c

in most cases c is small (2, 4, 5)

• Fe(s, t; k < R(s, t)) ≥ R(s, t) + 4
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Special cases (other than Fe(3, 3; 4))∗

Fe(3, 4;≥ 10) = 9, K9 since R(3, 4) = 9

Fe(3, 4; 9) = 14, K4 + C5 + C5, Nenov (1991)

Fe(3, 4; 8) = 16, Kolev/Nenov (2006)

Fe(3, 4; 7) =?

Fe(3, 5; 14) = 16

Fe(4, 4; 18) = 20

Fe(3, 7; 22) ≥ 27

Fe(3, 3, 3; 17) = 19

Fe(3, 3, 3; 16) = 21

forbidden Kk in the above items has

k = R(s, t) or k = R(s, t)− 1

several critical graphs have the form

Kp + Cq, Kp + Cq + Cr, or Kp − Cq
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Vertex Folkman numbers pearls

Fv(2, 2, 2; 3) = 11

the smallest 4-chromatic triangle-free graph

Grőtzsch graph [mathworld.wolfram.com]

Fv(2, 2, 2, 2; 4) = 11

the smallest 5-chromatic K4-free graph has

11 vertices, Nenov (1984), also 1993

Fv(2, 2, 2, 2; 3) = 22

the smallest 5-chromatic triangle-free graph

has 22 vertices, Jensen/Royle (1995)
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Vertex Folkman numbers pearls

Theorem 4. (ancient folklore)

Fv(2, · · · , 2
︸ ︷︷ ︸

r

; r) = r + 5, for r ≥ 5.

Theorem 5. (Nenov 2003)

Fv(3, · · · , 3
︸ ︷︷ ︸

r

; 2r) = 2r + 7, for r ≥ 3.

For r = 2, a small but hard case,

Fv(3, 3; 4) = 14 (PRU 1999)
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Complexity of arrowing

• Testing whether F → (3, 3)e is

coNP-complete (Burr 1976).

• Determining if R(G, H) < m is

NP-hard (Burr 1984).

• For any fixed 3-connected graphs G and

H, testing whether F 6→ (G, H)e is

NP-complete (Burr 1990).

• Testing whether F → (G, H)e is

Π
p
2-complete (Schaefer 2001).

Testing whether F → (K2, Kn)e is the same as

checking Kn ⊂ F , so it is NP-hard.
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Complexity of (edge) arrowing∗

Compendium of arrowing complexity

including contributions by Cook (1971),

Burr (1976, 1984, 1990), Rutenburg (1986)

and Schaefer (2001)

Problem Fixed Complexity

F → (G, H) Π
p
2-complete

F → (G, H) G, H in coNP
F → (K2, H) NP-complete
F → (K2, H) H NP-complete

F → (T, Kn) T , e(T ) ≥ 2 ΠP
2 -complete

F → (G, H) G, H ∈ Γ3 coNP-complete
F → (P4, P4) coNP-complete
F → (kK2, H) k, H P
F → (K1,n, K1,m) P

Kn → (G, H) NP-hard
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Tools in complexity of arrowing∗

(G, H)-enforcers, -signal senders, -cleavers,

-determiners are the tools (gadgets) used in

reductions (Burr, Schaefer).

Such gadgets permit to construct F for which

we are in control of whether F → (G, H).

Definition (Grossman 1983)

F is a (G, G)-cleaver iff there exists unique

coloring of F witnessing F 6→ (G, G).
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Cleavers∗

P4 cleaved graph F , F 6→ (P4, P4),

but there is only one witness coloring.

T
T
T
TT

�
�

�
�����

HHH

t

t t

t

t t

graph F

Known K3-cleaved graphs contain K4.

K5 is not C5-cleaved, P3 cleaves C2n.
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G127 → (3, 3)e ?

Exoo suggested to look at the well known

Ramsey graph (Hill, Irving 1968), defined by:

G127 = (Z127, E)

E = {(x, y)|x− y = α3 (mod 127)}

• 127 vertices, 2667 edges, 9779 triangles

• regular of degree 42

• independence number 11, no K4’s !

• vertex- and edge-transitive

• 5334 (= 127 ∗ 42) automorphisms

• (127, 42, 11, {14, 16}) - regularity,

almost strongly regular graph

• K127 can be partitioned into three G127’s
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When to expect G→ (3, 3)e ?

• G has a large number of triangles

• G has many small dense subgraphs

• Spencer’s proof is far from useful for G127

Conjecture: G127 → (3, 3)e

If G127 → (3, 3)e then it gives 23,622,047-fold

improvement over Spencer/Hovey bound.
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Proving G→ (3, 3)e

First, solve a simpler task: find a small

subgraph H, embedded in G in many places,

such that there is a small number of colorings

witnessing H 6→ (3, 3)e

Second, try to extend all (not many)

colorings for H 6→ (3, 3)e to whole G,

or, if this is too expensive ...

go via SAT ...
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Reducing {G | G 6→ (3, 3)e} to 3-SAT

edges in G 7−→ variables of φG

each (edge)-triangle xyz in G 7−→ add to φG

(x + y + z) ∧ (x + y + z)

Clearly,

G 6→ (3, 3)e ⇐⇒ φG is satisfiable

For G = G127, φG has 2667 variables and

19558 3-clauses, 2 for each of the 9779

triangles.

Note: By taking only the positive clauses, we

obtain a reduction to φ′G in NAE-3-SAT with

half of the clauses.
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Algorithms for 3-SAT∗

Randomized algorithms finding a satisfying

assignment to n-variable 3-SAT in expected

time

O(cn)

Between 1997 and 2004, c was sliding down

from 1.782 to 1.324 (Iwama, Tamaki - 2004)

in a dozen of papers.

8-authors TCS 2002 paper presenting a

deterministic algorithm for k-SAT running in

time
(

2−
2

k + 1

)n
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SAT-solvers - enhanced/tuned

Davis-Putnam Algorithm

zChaff

Well known solver since 2001, winner of

competitions. EE Princeton group: Fu,

Mahajan, Zhao, Zhang, Malik, joined by

Madigan (MIT), Moskewicz (UC Berkeley).

Satzoo → MiniSat → SatELite

New contender since 2003, strong for

combinatorial/handmade instances, 4 gold

medals in 2005, Eén and Sörensen

(Chalmers U., Sweden)
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SAT-solvers

SAT 2005 Competition

3 medals in each of 9 categories

(random, crafted, industrial)

× (SAT, UNSAT, ALL)

SatELite - winner of 2005 competition

in the category (crafted, UNSAT)

March eq, Vallst, Adaptnovelty, Kcnfs, Jerusat

other recent less known leading SAT-solvers

GRASP’99, SATO’97, POSIT’95

other older more known SAT-solvers
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zChaff experiments on φG127

• Pick H = G127[S] on m = |S| vertices.

Use zChaff to split H:

• m ≤ 80, H easily splittable

• m ≈ 83, phase transition ?

• m ≥ 86, splitting H is very difficult

• #(clauses)/#(variables) = 7.483 for G127,

far above conjectured phase transition

ratio r ≈ 4.2 for 3-SAT. It is known that

3.52 ≤ r ≤ 4.596
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SAT solvers∗

ZCHAFF
M. Moskewicz and C. Madigan and Y. Zhao and L. Zhang and S.
Malik, Chaff: Engineering an Efficient SAT Solver, Proceedings of
the 39th Design Automation Conference, Las Vegas, June, 2001.
Available at http://www.princeton.edu/˜chaff (2004).

MARCH EQ
Marijn Heule and Hans van Maaren, March eq SAT-solver, 2004.
Available at http://www.isa.ewi.tudelft.nl/sat/march eq.htm.

Links to other SAT-solvers can be easily found on the web.
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Revisions∗

Revision #1, October 28, 2004
presented at MCCCC’04, Rochester NY

Revision #2, February 7, 2005
presented at the University of Rochester, Rochester NY

Revision #3, October 7, 2005
presented at MCCCC’05, Rochester NY

Revision #4, November 23, 2006
presented at the Technical University of Gdańsk, Poland

Revision #5, March 25, 2007

· · ·

Revision #n, June 7, 2013
presenting solution to the G127 problem, Playa Azul, Cozumel QR
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