> Bounds on Shannon Capacity and Ramsey Numbers from Product of Graphs

Xiaodong Xu<sup>1</sup> Stanisław Radziszowski<sup>2</sup>

<sup>1</sup>Guangxi Academy of Sciences Nanning, Guangxi, China

<sup>2</sup>Department of Computer Science Rochester Institute of Technology, NY, USA

March 2014









**Ramsey Numbers** 

- 3 Old links between Shannon and Ramsey
- A New links between Shannon and Ramsey
  - Two Ramsey constructions
  - Implications for Shannon capacity

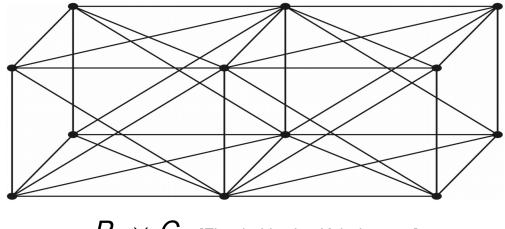


### Strong Product of Graphs

- Graphs  $G_i = (V_i, E_i), 1 \le i \le k$
- Strong graph product  $G_1 \times \cdots \times G_k$

Vertices:  $V_1 \times \cdots \times V_k$ 

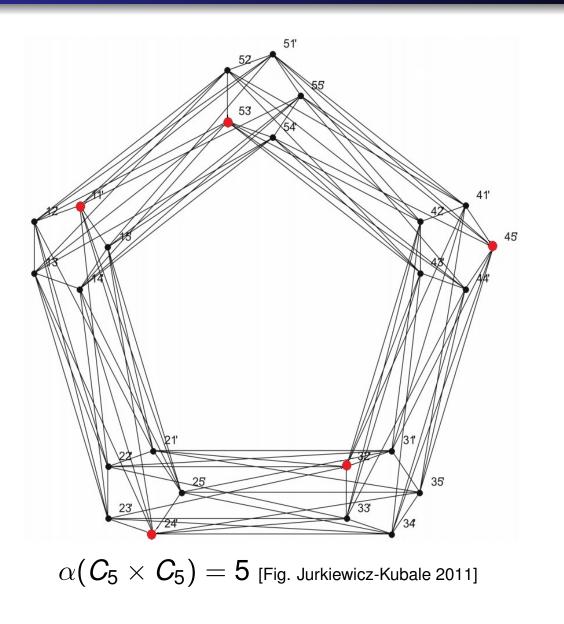
Edges:  $\{(u_1, ..., u_k), (v_1, ..., v_k)\},\$ such that  $u_i = v_i$  or  $\{u_i, v_i\} \in E_i$ , for each  $1 \le i \le k$ 



 $P_3 imes C_4$  [Fig. Jurkiewicz-Kubale 2011]



### Strong Product of Graphs





Shannon Capacity of a noisy channel modeled by graph

- vertices = transmitted characters
   edges = possible confusion
- Sending any independent set is safe.
   How well can we do with repeated use of the channel?
- Shannon (1956)
   The capacity of a noisy channel modeled by graph G:

$$c(G) = \lim_{n \to \infty} \alpha(G^n)^{1/n}$$

 $\alpha(G^n)$  is the independence number of  $G \times \cdots \times G$ vertices on each coordinate of any independent set in  $G^n$  induce an nonedge in G



Shannon Capacity of Cycles better than naive for C<sub>5</sub>

•  $c(C_5) = \sqrt{5}$ , (Lovász 1979)

Consider cycle  $C_5$ , 1-2-3-4-5-1 In  $C_5^2$ , {11, 32, 53, 24, 45} is an independent set

$$4 = \alpha(C_5)^2 < \alpha(C_5^2) = 5$$

- This inequality is "all we get" for  $C_5^t$
- $c(C_7)$  is still unknown
- For even cycles  $c(C_{2k}) = k$ , since

$$k^t = \alpha(C_{2k})^t = \alpha(C_{2k}^t)$$



#### Shannon Capacity difficult, interdisciplinary

- EE, communication, information, and coding theory
- Graph theory papers by Alon, Bohman, Codenotti, Li, Lubetzky, Resta, and others on graph theoretic and combinatorial perspective
- In the strong product of graphs:

 $\alpha(G)\alpha(H) \leq \alpha(G \times H)$ 



# Lovász function

• Lovász  $\vartheta(G)$  function, for  $c \in \mathbb{R}^N$ ,  $|c| = 1, N \le n(G)$ :

$$\vartheta(G) = \min_{c,U} \max_{i \in V} \frac{1}{(c^T u_i)^2},$$

where *U* is an orthonormal representation of *G*, i.e.  $R^N \supset U = \{u_i\}_{i \in V}, u_i^T u_j = 0$  if  $ij \notin E(G)$ .

- $\vartheta(G)$  is relatively efficient (though not easy) to compute
- $\vartheta(G)\vartheta(H) = \vartheta(G \times H),$  $\vartheta(G)\vartheta(\overline{G}) \ge n(G)$
- Sandwich theorem:

$$\alpha(G) \leq c(G) \leq \vartheta(G) \leq \chi(\overline{G})$$



# Shannon capacity of odd cycles

Vesel-Žerovnik 2000

 $108 \le lpha(C_7^4) \le 115$  $343 \le lpha(C_7^5) \le 402$ 

Improve on  $343^{1/5} = 3.214... < c(C_7) < 3.318$ 

• Bohman-Holzman 2003 good bounds for  $\alpha(C^d_{2k+1})$  for special d and k

Improve on what is known on  $c(C_{2k+1})$ 



# **Ramsey Numbers**

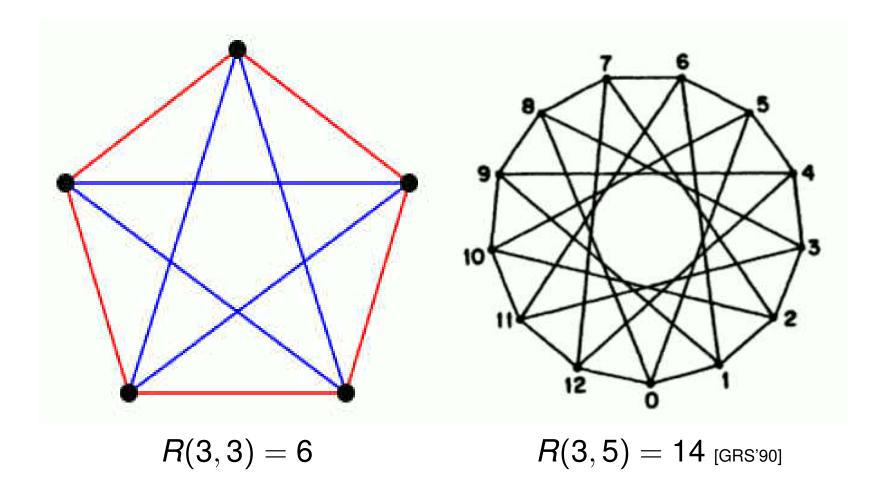
• R(G,H) = n iff

minimal *n* such that in any 2-coloring of the edges of  $K_n$  there is a monochromatic *G* in the first color or a monochromatic *H* in the second color

- 2-colorings  $\cong$  graphs,  $R(m, n) = R(K_m, K_n)$
- Generalizes to k colors,  $R(G_1, \dots, G_k)$
- Theorem (Ramsey 1930): Ramsey numbers exist



### Unavoidable classics



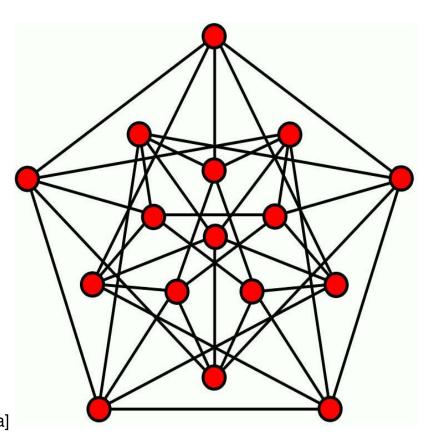


Shannon Capacity Ramsey Numbers Old links between Shannon and Ramsey

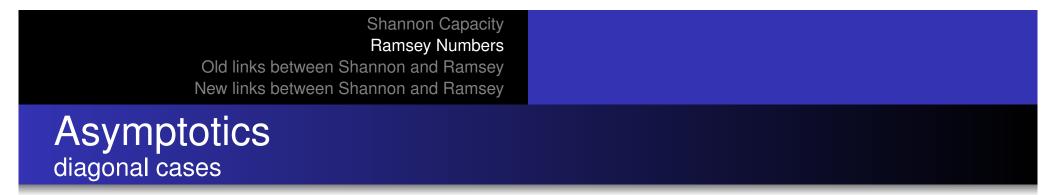
New links between Shannon and Ramsey

### Clebsch (3, 6; 16)-graph on $GF(2^4)$ (x, y) $\in E$ iff $x - y = \alpha^3$





Alfred Clebsch (1833-1872)



Bounds - Erdős 1947, Spencer 1975, Conlon 2010

$$\frac{\sqrt{2}}{e}2^{n/2}n < R(n,n) < R(n+1,n+1) < \binom{2n}{n}n^{-c\frac{\log n}{\log\log n}}$$

• Conjecture (Erdős 1947, \$100)

 $\lim_{n\to\infty} R(n,n)^{1/n}$  exists.

If it exists, it is between  $\sqrt{2}$  and 4 (\$250 for value).

• Theorem (Chung-Grinstead 1983)  $L = \lim_{k \to \infty} R_k(3)^{1/k}$  exists.

3.199 < *L*, (Fredricksen-Sweet 2000, X-Xie-Exoo-R 2004)



Things to do computational multicolor Ramsey numbers problems

• Improve 
$$45 \le R(3, 3, 5) \le 57$$

• Finish off 
$$30 \le R(3, 3, 4) \le 31$$

- Improve on  $R_4(3) \le 62$ , understand why heuristics don't find  $51 \le R_4(3)$
- Improve on 3.199 <  $\lim_{k\to\infty} R_k(3)^{1/k}$

Recall:  $c(G) = \lim_{k \to \infty} \alpha(G^k)^{1/k}$ 



#### Adding many colors to R<sub>n</sub>(k) constructions

• Abbott 1965, Song 1994

$$R_{n+m}(k) > (R_n(k)-1)(R_m(k)-1)$$

- G[H] product of colorings
  Vertices: V(G) × V(H)
  Edge colors:
  if u<sub>1</sub> = u<sub>2</sub> then {(u<sub>1</sub>, v<sub>1</sub>), (u<sub>2</sub>, v<sub>2</sub>)} in G[H] has color of {v<sub>1</sub>, v<sub>2</sub>} in H, else color of {u<sub>1</sub>, u<sub>2</sub>} in G
- G[H] and H[G] need not be isomorphic



#### Adding vertices to union constructions

### Construction (X-Xie-Exoo-R 2004, X-Shao-R 2011)

Given (k, p)-graph G, (k, q)-graph H,  $k \ge 3$ ,  $p, q \ge 2$ , such that G and H contain a common induced  $K_{k-1}$ -free graph M, there exists (k, p+q-1)-graph F, n(F) = n(G) + n(H) + n(M).

$$VG = \{v_1, v_2, ..., v_{n_1}\}, VH = \{u_1, u_2, ..., u_{n_2}\}$$
$$VM = \{w_1, ..., w_m\}, m \le n_1, n_2, K_{k-1} \not\subset M$$
$$G[\{v_1, ..., v_m\}], H[\{u_1, ..., u_m\}] \cong M$$
$$\phi(w_i) = v_i, \psi(w_i) = u_i \text{ isomorphisms}$$

$$VF = VG \cup VH \cup VM$$
  

$$E(G, H) = \{\{v_i, u_i\} \mid 1 \le i \le m\}$$
  

$$E(G, M) = \{\{v_i, w_j\} \mid 1 \le i \le n_1, 1 \le j \le m, \{v_i, v_j\} \in E(G)\}$$
  

$$E(H, M) = \{\{u_i, w_j\} \mid 1 \le i \le n_2, 1 \le j \le m, \{u_i, u_j\} \in E(H)\}$$

There exist multicolor extensions



# Linking Shannon and Ramsey

#### Theorem

**Erdős-McEliece-Taylor 1971** For arbitrary graphs  $G_1, \ldots, G_n$ ,

$$\alpha(G_1 \times \cdots \times G_n) < R(\alpha(G_1) + 1, \dots, \alpha(G_n) + 1)$$

and for all  $k_1, \ldots, k_n > 0$  there exist graphs  $G_i$  with  $\alpha(G_i) = k_i$ ,  $1 \le i \le n$ , such that

$$\alpha(G_1 \times \cdots \times G_n) = R(k_1 + 1, \ldots, k_n + 1) - 1.$$

For the diagonal case  $k_i = k$ , there exists a graph G with  $\alpha(G) = k$ , such that  $\alpha(G^n) = R_n(k+1) - 1$ .



# Linking Shannon and Ramsey

• For all graphs  $G_i$ :  $\alpha(G_1 \times \cdots \times G_n) < R(\alpha(G_1) + 1, \dots, \alpha(G_n) + 1)$ 

Make Ramsey witness on any MIS in  $G_1 \times \cdots \times G_n$ , edge  $\{(u_1, \ldots, u_n), (v_1, \ldots, v_n)\}$  gets color *i*, the smallest index *i* with  $u_i \neq v_i$ .

• There exist graphs  $G_i$ :  $R(k_1 + 1, ..., k_n + 1) = \alpha(G_1 \times \cdots \times G_n) + 1$ 

Make  $G_i$ 's from any Ramsey witness on  $V = \{1, ..., m\}$ ,  $G_i = (V, E_i)$ , nonedges = color i,  $\alpha(G_i) = k_i$ ,  $\{(x, x, ..., x) : 1 \le x \le m\}$  is IS in  $G_1 \times \cdots \times G_n$ ,  $\alpha(G_1 \times \cdots \times G_n) = m$ .



Two Ramsey constructions Implications for Shannon capacity

### New Ramsey Lower Bound

#### Theorem

For integers  $k, n, m, s \ge 2$ , let  $G \in \mathcal{R}_n(k; s)$  be a coloring containing an induced subcoloring of  $K_m$  using less than n colors. Then

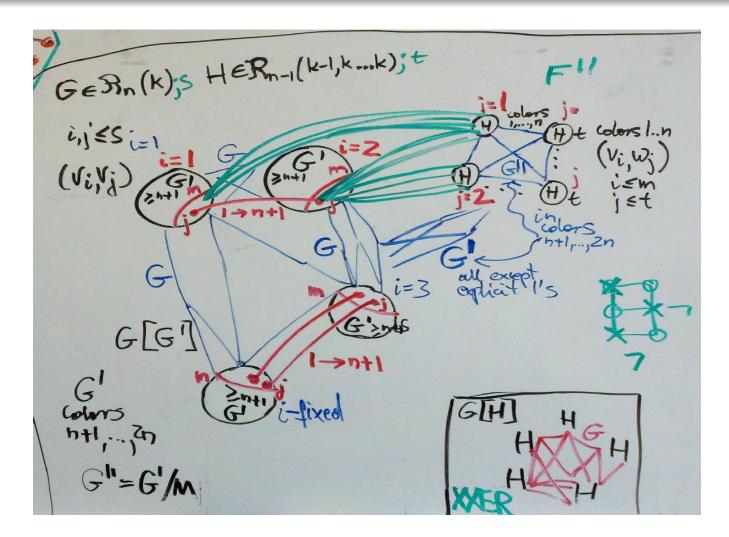
$$R_{2n}(k) \geq s^2 + m(R_n(k-1,\underbrace{k,\cdots,k}_{n-1})-1) + 1$$

#### **Proof.** By construction



Two Ramsey constructions Implications for Shannon capacity

### Proof by construction



Doubling colors, squaring+ vertices



Two Ramsey constructions Implications for Shannon capacity

### Even better new Ramsey lower bound

#### Theorem

Let  $G_0, G_1 \in \mathcal{R}_n(k; s), H_0 \in \mathcal{R}_n(k - 1, k, ..., k; t)$  be given for  $n, k, s, t \ge 2$ . Assume that  $G_1$  contains an induced subcoloring of  $K_m$  using less than n colors, and that  $G_0$  and  $H_0$  both contain an induced subcoloring of  $K_r$  isomorphic to a coloring  $H_1 \in \mathcal{R}_n(k - 1, k, ..., k; r)$ , for some  $m \ge 2, r \ge 1$ . Then

$$R_{2n}(k) \ge s^2 + m(t+r) + 1.$$

#### **Problem.**

Increase further RHS by a term improving the lower (constructive) asymptotics for  $R_n(3)$  and  $R_n(k)$ .



Two Ramsey constructions Implications for Shannon capacity

# Main Result

#### Theorem

If the supremum of the Shannon capacity c(G) over all graphs G with  $\alpha(G) = 2$  is finite and equal to C, then  $C > \alpha(G^n)^{1/n}$  for any graph G with  $\alpha(G) = 2$ , for all n > 0.

#### **Proof.** Suppose that

 $C^n = \alpha(G^n) < R_n(3)$ , for some G with  $\alpha(G) = 2$ , and n > 0There exists H with  $\alpha(H) = 2$ ,  $\alpha(H^{2n}) = R_{2n}(3) - 1$ By our constructions  $\alpha(H^{2n}) > (R_n(3) - 1)^2 \ge \alpha(G^n)^2 = C^{2n}$ Hence,  $c(H^{2n})^{1/2n} > C$ , contradiction  $\diamondsuit$ 



Two Ramsey constructions Implications for Shannon capacity

### More general main result

#### Theorem

The supremum of the Shannon capacity over all graphs with bounded independence number cannot be achieved by any finite graph power.

Proof. Generalization of the last proof.



### Main references

Xiaodong Xu, SPR, Bounds on Shannon Capacity and Ramsey Numbers from Product of Graphs, *IEEE Transactions on Information Theory*, 59(8) (2013) 4767–4770.

Our prior work and background:

- Xu Xiaodong, Xie Zheng, Geoffrey Exoo, SPR, Constructive Lower Bounds on Classical Multicolor Ramsey Numbers, *Electronic Journal of Combinatorics*, 11(1) (2004) #R35.
- Xiaodong Xu, Zehui Shao, SPR, More Constructive Lower Bounds on Classical Ramsey Numbers, SIAM Journal on Discrete Mathematics, 25 (2011), 394–400.
- SPR, Small Ramsey Numbers, Electronic J. Combinatorics, Dynamic Survey DS1, revision #14, January 2014.

