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Abstract

Let ∆s = R(K3,Ks) − R(K3,Ks−1), where R(G,H) is the Ramsey number
of graphs G and H defined as the smallest n such that any edge coloring of Kn

with two colors contains G in the first color or H in the second color. In 1980,
Erdős and Sós posed some questions about the growth of ∆s. The best known
concrete bounds on ∆s are 3 ≤ ∆s ≤ s, and they have not been improved since
the stating of the problem. In this paper we present some constructions, which
imply in particular that R(K3,Ks) ≥ R(K3,Ks−1 − e) + 4, and R(3,Ks+t−1) ≥
R(3,Ks+1 − e) + R(3,Kt+1 − e) − 5 for s, t ≥ 3. This does not improve the lower
bound of 3 on ∆s, but we still consider it a step towards to understanding its growth.
We discuss some related questions and state two conjectures involving ∆s, including
the following: for some constant d and all s it holds that ∆s −∆s+1 ≤ d. We also
prove that if the latter is true, then lims→∞∆s/s = 0.
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1 Notation and Overview

In this paper all graphs are simple and undirected. The vertex set of graph G is denoted
by V (G), n(G) = |V (G)|, the edge set by E(G), and the set of neighbors of a vertex v
in G will be written as NG(v). The independence number of G, denoted by α(G), is the
order of the largest independent set in G. The graph induced in G by the set of vertices
S ⊂ V (G) will be denoted by G[S]. For v ∈ V (G) and e ∈ E(G), G − v will stand for
G[V \ {v}], and G− e for the graph G with edge e removed.

For graphs G and H, the Ramsey number R(G,H) is the smallest positive integer n
such that every coloring of the edges of Kn with two colors contains a monochromatic
G in the first color or a monochromatic H in the second color. If the edges in the first
color are interpreted as a graph F and those in the second color as its complement, then
R(G,H) can be defined equivalently as the smallest n such that every G-free graph on
n vertices contains H in the complement. If G = Ks and H = Kt then we will write
R(s, t) for R(G,H). Any G-free graph F on n vertices without H in the complement will
be called a (G,H;n)-graph. An (s, t;n)-graph will mean the same as a (Ks, Kt;n)-graph.
A regularly updated survey by the third author [16] lists the values and the best known
bounds on various types of Ramsey numbers.

In the sequel we will be concerned almost exclusively with the Ramsey numbersR(3, G)
and (3, G;m)-graphs for G being Ks or Ks − e. Observe that R(3, G) = m + 1 if and
only if m is the largest integer such that there exists a (3, G;m)-graph. Note also that in
triangle-free graphs the neighborhoods are independent sets.

The asymptotics of R(3, s) was extensively studied and now it is quite well understood.
It is known that

(
1/4 + o(1)

) s2

log s
≤ R(3, s) ≤

(
1 + o(1)

) s2

log s
.

In 1995, Kim [12] using probabilistic method improved lower bound asymptotics to
R(3, s) = Ω(s2/ log s). More detailed work followed, and finally the lower bound con-
stant 1/4 was obtained recently by Bohman and Keevash [2], and independently by Fiz
Pontiveros, Griffiths and Morris [8]. The upper bound constant 1 is implicit in a 1983
paper by Shearer [17], and it also can be stated without o(1) for s ≥ 3 as

R(3, s+ 1) ≤ (s− 1)2

log s− 1 + s−1
+ 1. (1)
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However, the difference R(3, G)−R(3, H) for concrete “consecutive” G and H is still
very difficult to estimate, even starting with rather small cases. In general, for Ks and
Ks − e, all we know is the following:

Easy old bounds [3], see Section 2 and Construction 1 in Section 3,

3 ≤ R(3, Ks)−R(3, Ks−1) ≤ s, (2)

trivial bounds implied by the monotonicity of Ramsey numbers

R(3, Ks−1) ≤ R(3, Ks − e) ≤ R(3, Ks), (3)

and a result obtained in this paper (Corollary 7 in Section 4)

4 ≤ R(3, Ks+1)−R(3, Ks − e). (4)

Many attempts were made to improve on some part of (2) or (3), to no avail. We
believe that our relatively simple constructions proving inequality (4) in Section 4 form
an interesting step towards a better understanding of both (2) and (3). We pose it as a
challenge to improve over any of the inequalities in (2), (3) or (4), or their combination
as (4) combines parts of (2) and (3).

2 Erdős-Sós Problem

Problem. Erdős-Sós 1980 [7, 5]
Let ∆s = R(3, s)−R(3, s− 1). Is it true that

∆s
s→∞−→ ∞ ? (∆s/s)

s→∞−→ 0 ? (5)

Only easy bounds on ∆s as in (2) are known. The upper bound ∆s ≤ s is obvious
since the maximum degree of (3, s)-graphs is at most s−1. The lower bound 3 ≤ ∆s looks
misleadingly simple, but it is not trivial (see Construction 1 in the next section). It was
argued in [10] that a better understanding of ∆s may come from the study of R(3, Ks−e)
relative to R(3, Ks) = R(3, s), since

∆s =
(
R(3, Ks)−R(3, Ks − e)

)
+
(
R(3, Ks − e)−R(3, Ks−1)

)
.

Recent progress on what we know for small cases is significant [9, 10], however some
very simple-looking questions remain open. For example, we do not even know whether
R(3, Ks−e)−R(3, Ks−1) is positive for every large s. However, in Section 4 we prove (4),
and in Section 5 we show that the second part of (5) holds under the assumption that
there exists a constant d for which ∆s −∆s+1 ≤ d for all s.
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3 Previous Constructions

Burr, Erdős, Faudree and Schelp [3] in 1989 gave a general lower bound construction
yielding R(k, s + 1) ≥ R(k, s) + 2k − 3 for k, s ≥ 2. For k = 3 it is equivalent to the
following construction, which implies ∆s ≥ 3.

Construction 1. [3]
For s ≥ 2, given any (3, s;n)-graph, we can extend it to a (3, s+ 1;n+ 3)-graph.

Proof. Let u ∈ V (G) be any vertex of a (3, s;n)-graph G. Note that since α(G) < s
we have degG(u) < s. A (3, s + 1;n + 3)-graph G′ extending G is defined on the set of 3
more vertices V (G′) = V (G)∪{v, x, y} with the set of edges E(G′) = E(G)∪{vw | uw ∈
E(G)} ∪ {ux, xy, yv}. Consider any independent set I in G′, and the cardinality t of its
intersection with {u, v, x, y}. If t ≤ 1 then |I| ≤ α(G) + 1, otherwise t = 2 and we must
have that at least one of the vertices u and v is in I. Thus |I \ {u, v, x, y}| < s− 1, and
hence G′ is a (3, s+ 1;n+ 3)-graph. �

Theorem 2 below is based on a generalization of Construction 1, which together with
a similar construction in [20] imply the lower bounds in the following Theorem 3 [19].

Theorem 2. [20] For every k ≥ 3 and s, t ≥ 2, given any (k, s)-graph G and (k, t)-graph
H, if both G and H contain an induced subgraph isomorphic to some Kk−1-free graph M ,
then

R(k, s+ t− 1) ≥ n(G) + n(H) + n(M) + 1.

Theorem 3. [19]
If 2 ≤ s ≤ t and k ≥ 3, then

R(k, s+ t− 1) ≥ R(k, s) +R(k, t) +

{
k − 3, if s = 2;
k − 2, if s ≥ 3 or k ≥ 5.

Gyárfás, Sebő and Trotignon [11] studied the growth of R(3, s) in order to give precise
bounds on the so called chromatic gaps. In particular, using Theorems 2 and 3, they
describe various implications characterizing R(3, s+ k)−R(3, s).

4 New Constructions

We present two simple constructions, the second one generalizing the first, which together
apparently add some new understanding of (2) and (3) and how they imply (4).

Construction 4. For s, t ≥ 3, given any (3, s+ 1;m)-graph G and (3, t+ 1;n)-graph H,
we construct from G and H a (3, s+ t;m+ n− 2)-graph F .
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Proof. Let G be any (3, s + 1;m)-graph and H any (3, t + 1;n)-graph, on disjoint
sets of vertices, and consider arbitrary two vertices u ∈ V (G) and v ∈ V (H). We will
construct a (3, s+ t;m+n− 2)-graph F on the vertex set V (F ) = V (G)∪ V (H) \ {u, v}.
Denote XG = NG(u), YG = V (G − u) \ XG, XH = NH(v) and YH = V (H − v) \ XH ,
so V (F ) is partitioned into XG ∪ YG ∪ XH ∪ YH . The set of edges of F is defined by
E(F ) = E(G− u)∪E(H − v)∪ {xy | x ∈ XG, y ∈ XH}. Clearly, graph F is triangle-free
and it has the right number of vertices. We need to show that α(F ) < s + t. Note that
F contains a complete bipartite graph with partite sets XG and XH , and thus for any
independent set I in F we have xG = |I ∩ XG| = 0 or xH = |I ∩ XH | = 0, and also it
holds that yG = |I ∩ YG| ≤ s − 1 and yH = |I ∩ YH | ≤ t − 1. Since |I ∩ V (G)| ≤ s and
|I ∩ V (H)| ≤ t, for xG > 0 we have |I| ≤ s+ yH , and for xH > 0 we have |I| ≤ yG + t. In
both cases |I| ≤ s+ t− 1 as required. �

We observe that Construction 4 (with adjusted s and t) gives an alternate proof of a
part of Theorem 3 for k = 3, but also R(3, s+ t) ≥ R(3, s+1)+R(3, t+1)−3. The latter
is equivalent to Lemma 3.20 in [11], but we note that our path to this inequality is much
simpler, and it does not depend on any intermediate results. In the next construction we
exploit in more detail the structure of the base graphs G and H.

Construction 5. For s, t ≥ 3, given any (3, s+1;m)-graph G which has two nonadjacent
vertices with at most cG common neighbors, and any (3, t+ 1;n)-graph H which has two
nonadjacent vertices with at most cH common neighbors, we construct from G and H a
(3, s+ t− 1;m+ n− cG − cH − 4)-graph F .

Proof. Let G and H be as stated above, where u1, u2 have cG common neighbors in G and
v1, v2 have cH common neighbors in H, respectively. We partition the set V (G) \ {u1, u2}
into X12

G ∪ X1
G ∪ X2

G ∪ YG, where X12
G = NG(u1) ∩ NG(u2), X

1
G = NG(u1) \ NG(u2),

X2
G = NG(u2) \NG(u1), and YG = {u ∈ V (G) \ {u1, u2} | uu1 /∈ E(G) and uu2 /∈ E(G)}.

Similarly, we set the partition V (H) \ {v1, v2} = X12
H ∪X1

H ∪X2
H ∪YH by considering four

possible adjacencies to vertices v1, v2 in H. Obviously, |X12
G | = cG and |X12

H | = cH . We
will construct graph F on the set of vertices X1

G ∪X2
G ∪ YG ∪X1

H ∪X2
H ∪ YH , which has

cardinality as needed. The set of edges of F is defined by

E(F ) = E(G[X1
G ∪X2

G ∪ YG]) ∪ E(H[X1
H ∪X2

H ∪ YH ]) ∪K(X1
G, X

1
H) ∪K(X2

G, X
2
H),

where K(X1
G, X

1
H) and K(X2

G, X
2
H) are the edges of two complete bipartite graphs between

indicated pairs of sets. It remains to be shown that α(F ) ≤ s+t−2. Let I ⊂ V (F ) be any
independent set in F , and denote by x1G, x

2
G, yG, x

1
H , x

2
H , yH the orders of intersection of I

with the corresponding parts of V (F ). Similarly as in Construction 4, we have (x1G = 0
or x1H = 0) and (x2G = 0 or x2H = 0). Furthermore, x1G + yG, x

2
G + yG ≤ s− 1, yG ≤ s− 2,

and x1H + yH , x
2
H + yH ≤ t − 1, yH ≤ t − 2. If x1G > 0 and x2G > 0, then x1H = x2H = 0

and thus |I| ≤ α(G) + yH ≤ s + (t − 2). If x1H > 0 and x2H > 0, then x1G = x2G = 0 and
thus |I| ≤ α(H) + yG ≤ t + (s − 2). If only one of x1G, x

2
G is positive, say x1G > 0, then

x2G = x1H = 0 and |I| ≤ (x1G + yG) + (x2H + yH) ≤ (s− 1) + (t− 1). �

One can look at Construction 5 as lowering the independence number of a union of G
and H by 2, but at the cost of dropping cG + cH + 4 vertices. In the next three corollaries
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s R(3, Js) R(3, Ks) ∆s s R(3, Js) R(3, Ks) ∆s

3 5 6 3 10 37 40–42 4–6
4 7 9 3 11 42–45 47–50 5–10
5 11 14 5 12 47–53 53–59 3–12
6 17 18 4 13 55–62 60–68 3–13
7 21 23 5 14 60–71 67–77 3–14
8 25 28 5 15 69–80 74–87 3–15
9 31 36 8 16 74–91 82–98 3–16

Table 1: R(3, Js) and R(3, Ks), Js = Ks − e, for s ≤ 16 [10], and [13, 14].

we show how in some cases we can further assume that cG = cH = 0. We will say that
a (3, s)-graph G is edge minimal if deletion of any of its edges increases α(G) to s, and
it is edge maximal if addition of any edge creates a triangle. A (3, s)-graph G is called
bicritical if it is both edge minimal and maximal.

Corollary 6. For s ≥ 3 and m = R(3, s + 1) − 1, if there exists a (3, s + 1;m)-graph
which is not bicritical, then ∆s+2 ≥ 4.

Proof. Let G′ be a (3, s + 1;m)-graph which is not bicritical. If it is not edge minimal,
then the removal of some edge e = uv ∈ E(G) gives a (3, s + 1;m)-graph G = G′ − e,
in which vertices u and v have no common neighbors. If G′ is not edge maximal, let
G = G′. In either case we have a (3, s + 1;m)-graph G with cG = 0 which will be used
with Construction 5.

There exist three (3, 4; 8)-graphs (with 10, 11 and 12 edges). Let H be the well known
unique (3, 4; 8)-graph with 10 edges, which is the cycle on 8 vertices v1v2 · · · v8 with two
consecutive main diagonal edges v1v5 and v2v6. The vertices v3 and v7 have no common
neighbors. We will use this H with n = 8, t = 3 and cH = 0. The graph F resulting from
G and H by applying Construction 5 is a (3, s+ 2;m+ 4)-graph, which proves the claim
that ∆s+2 ≥ 4. �

Table 1 presents known values and bounds on R(3, Ks), R(3, Ks − e) collected in
[9, 10] and ∆s for s ≤ 16, with an addition of recent improvements to the lower bounds
on R(3, Ks) for 12 ≤ s ≤ 15 [13, 14] (which implies new lower bounds for R(3, Ks− e) for
s = 14, 16). We note that for s ≤ 9, i.e. for which the exact value of R(3, s) is known,
there exist non-bicritical (3, s;R(3, s)− 1)-graphs for s ∈ {4, 6, 7, 8}.

Corollary 7. R(3, s+ 1) ≥ R(3, Ks − e) + 4, for s ≥ 2.

Proof. Let m = R(3, Ks−e)−1. Observe that every (3, Ks−e;m)-graph is a (3, Ks;m)-
graph after removal of any of its edges, furthermore the endpoints of the removed edge
share no common neighbors, since otherwise the original graph would have a triangle.
Using Construction 5 for any such (3, Ks)-graph as G, and the (3, 4; 8)-graph H as in the
proof of Corollary 6, gives a (3, s+ 1;m+ 4)-graph F , which proves the lower bound. �
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In Table 1, for cases when only the bounds are given for R(3, Ks − e) (Js = Ks − e)
or R(3, Ks), we believe that the exact values are much closer to lower bounds than upper
bounds. Actually, we expect that in most open cases the exact values are equal to the
listed lower bounds. The exceptions, if any, likely include some of the lower bounds for
R(3, Ks − e), s ∈ {12, 14, 16}, which currently are the only cases in the scope of Table 1
when they are the same as the best known lower bounds for R(3, Ks−1).

We end this section with one more corollary, which is a little more general than
Corollaries 6 and 7. Theorem 3 for s ≥ k = 3 gives the inequality R(3, s + t − 1) ≥
R(3, s) +R(3, t) + 1. The following Corollary 8 increases two terms of its right hand side
and decreases the constant only by 6.

Corollary 8. R(3, s+ t− 1) ≥ R(3, Ks+1 − e) +R(3, Kt+1 − e)− 5, for s, t ≥ 3.

Proof. Let m = R(3, Ks+1− e)− 1 and n = R(3, Kt+1− e)− 1. Consider any (3, Ks+1−
e;m)-graph G′ and any (3, Kt+1 − e;n)-graph H ′. As in the proof of Corollary 7, let
G = G′ − e for some edge e ∈ E(G′), then G is a (3, Ks+1;m)-graph which has two
nonadjacent vertices without common neighbors. Similarly, obtain (3, Kt+1;m)-graph
H from H ′. Now, by applying Construction 5 to graphs G and H we obtain graph F
witnessing the claimed lower bound. �

5 Two Conjectures

Observe that

R(3, s+ k)−R(3, s− 1) =
k∑

i=0

∆s+i. (6)

We expect ∆s to grow similarly as s/ log s to account for the asymptotics of R(3, s)
known to be Θ(s2/ log s), though with some small perturbations. ∆s is actually known
to be nonmonotonic as can be seen in Table 1 for s between 4 and 6. However, we believe
that such oscillations are contained as stated in the following Conjecture 9, where we
anticipate that the decrease between consecutive ∆s is bounded by a constant.

Gyárfás, Sebő and Trotignon [11] in their study of chromatic gaps, using Theorems
2 and 3, showed that we can obtain lower bounds on R(3, s + k) − R(3, s) better than
the obvious 3k, for k ≥ 2, s ≥ 3. In particular, we have ∆s ≥ 3, ∆s + ∆s+1 ≥ 7 and
∆s + ∆s+1 + ∆s+2 ≥ 11.

Conjecture 9. There exists d ≥ 2 such that for all s ≥ 2 we have ∆s −∆s+1 ≤ d.

Clearly, if ∆s is nondecreasing for large s then lims→∞∆s =∞, but even if we could
prove Conjecture 9 with d = 1 for s sufficiently large (note that ∆9 − ∆10 ≥ 2), it is
not clear that it would help to prove lims→∞∆s = ∞. However, we will show that if
Conjecture 9 is true then it implies a positive solution to the second part of the Erdős-Sós
problem.
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Theorem 10. If Conjecture 9 is true, then lims→∞∆s/s = 0.

Proof. For contradiction, suppose that Conjecture 9 holds, but there exists ε > 0 such
that ∆s ≥ εs for infinitely many s, furthermore satisfying s ≥ 2d/ε. Note that the latter
implies εs/d − 2 ≥ 0. Define k = bεs/dc, then observe that k ≥ 2, k + 1 > εs/d and
εs − kd ≥ 0. Now, assuming Conjecture 9, we have ∆s+i ≥ εs − id for 0 ≤ i ≤ k, and
using (6) we obtain the bound

R(3, s+ k)−R(3, s− 1) ≥ (k + 1)(εs− kd/2),

which gives
R(3, s+ k) > ε2s2/2d. (7)

On the other hand, the bound (1) with the above constraints on s, ε and d implies

R(3, s+ k) ≤ (s+ k − 2)2

log(s+ k − 1)− 1 + (s+ k − 1)−1
+ 1

<
(s+ εs/d− 2)2

log(s+ εs/d− 2)− 1
+ 1

< s2
(

(1 + ε/d)2

log s− 1
+

1

s2

)
= s2f(s, ε, d),

where for fixed ε and d we have lims→∞ f(s, ε, d) = 0. This contradicts inequality (7) for
s large enough, and hence lims→∞∆s/s = 0. �

Our attempts to improve on Theorem 10 led to the following stronger statement.
Suppose that a, b ∈ (0, 1) and a + 2b < 1. If there exists a constant d such that for all
s large enough we have ∆s − ∆s+1 ≤ d(log s)a, then lims→∞∆s(log s)b/s = 0. We omit
the proof, which is significantly more complicated than that of Theorem 10, since we feel
that it is rather a general implication involving such type of subquadratic functions, not
providing new insights on the Ramsey function R(3, s) itself.

While we expect that lims→∞∆s =∞ is true, it can be very difficult to prove. Instead,
we propose a weaker statement in Conjecture 11, and we think that it might be provable
by constructive methods. This may be feasible by exploiting the techniques used in
asymptotic nonprobabilistic lower bound constructions for R(3, s) such as those in [4, 6].
So far such techniques are weaker than the probabilistic methods, but they are more
general than the attempts of this paper.

Conjecture 11. There exists integer k such that

lim
s→∞

k∑
i=0

∆s+i =∞.
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Finally, we remark that the constructive methods studied in this paper and previous
efforts in similar directions [6, 11, 15] have applications beyond gaining new insights on
the growth of ∆s, like in the study of connectivity and hamiltonicity of Ramsey-critical
(k, s;R(k, s)−1)-graphs [1, 11, 19], chromatic gaps [11], or in multicolor case, for Shannon
capacity of graphs with bounded independence number [18].
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[11] A. Gyárfás, A. Sebő and N. Trotignon, The Chromatic Gap and Its Extremes, Journal
of Combinatorial Theory, Series B, 102 (2012) 1155–1178.

[12] J.H. Kim, The Ramsey Number R(3, k) Has Order of Magnitude t2/ log t, Random
Structures and Algorithms, 7 (1995) 173–207.

[13] M. Kolodyazhny, Novye Nizhnie Granitsy Chisel Ramseya R(3, 12) and R(3, 13)
(in Russian), Matematicheskoye i Informacionnoe Modelirovanie, Tyumen, 14 (2015)
126–130.

[14] M. Kolodyazhny, personal communication, 2016.
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