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Preliminaries

n > 3 ! odd integer

Zpn . the integer ring modulo n

Zy is a field if n is prime

Z}, 1 the multiplicative group modulo n
Z} is a cyclic group if n is prime.

lgn = logon : binary logarithm
Inn = log.n : natural logarithm

a : integer, GCD(n,a) =1
on(a) : the order of a modulo n,

i.e., the smallest positive integer m such that

am™ =1 (modn)

Brief History

e Eratosthenes, 276 BC — 194 BC:
the Eratosthenes Sieve

e Pratt '75: in NP

e Miller '76: O(log*n)-time solvable if the
Extended Riemann Hypothesis is true

e Solovay & Strassen '77; Rabin '80:
in coRP, still the choice in applications

e Adleman, Pomerance, & Rumely '83:
deterministic O((log n)!°91091097)_time

e Goldwasser & Kilian, '86: “Almost all”
primes can be proven to be prime in
0O(log!2n) time

e Adleman & Huang '87: in RP

e Fellows & Koblitz '92: in UP

e This paper: in P,
O((1og'2n)poly(loglog n))-time

Preliminaries

Fermat’s (Little) Theorem Let p be
prime. Then, for all a relatively prime to p,
op(a)|p — 1, that is, a?~1=1 (mod p).

Basic Congruence (AKS) Leta and n be
relatively prime. Then, n is prime iff

(z—a)"=(z"™ —a) (modn)



Proof of the AKS congruence

If n is prime, then by Fermat’s Theorem, for

all a relatively prime to n, a® =a (qu n) Some Results on Polynomials
For all i, 1 <i<n—1, the coeff. of z* in
(x—a)™is (—a)"_l(?), a multiple of n. Thus Proposition 1 p, r : distinct primes
n — ., .n n — n
(@ -a)t=2"+ ()" =2" —a (modn) 1. For all polynomials f(x) € Fp[z],
f(@)P = f(zP) (mod p).
If n is composite, let ¢ be a prime such that 2. Let h(z) be a factor of z" — 1.
n = g¥s and ¢ fs. Since (Z) — qkS'---'gz.’.“f;q%-l), For all integers m and m' such that
then m=m/ (mod r),
m — ,.m/
qk X(n)7 GCD(q, an_q) -1 r'=x (mod h(a:)) )
a 3. Over Fy, the polynomial = is the
so the coeff. of z? is nonzero modulo n. product of degree-oy(p) irreducible
polynomials.
Congruence follows.
|
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Proof of Proposition 1
[1] Let f(z) =ag+a1z+ -+ agz?
0<j<dp
The coeff. of 27 in f(z)P is
. . |
o, gla_ P
2 agag iol---ig!’
where the summation is over
, N . , o [2] Suppose m=m' (mod r).
{Gio,---1%4) |10 20,...,ig 2 0Nig+---+ig = g
pAl-ig+2-ip4---4+d-ig=j}. Note that Let s be such that m = sr +m'.
. Since h(z)|z" — 1, z" =1 (mod h(z)).
P { 5 (moa D) stnmmial So, T =1 (mod h(x)).
Yot modp) Otherwise. Thus, 2™ = z57z™ = z™  (mod h(z)).

In the former case p|j. Thus,
f@P= Y afmip (mod p).
0<i<d
Since p is prime, for all 4, 0<i<d, af =q;
(mod p). So,
f@P)= > aa’=f(z)’ (modp).

0<i<d



[3] p and r: distinct primes

h(z): irreducible factor of Z=1 in Fp[z].
Let k = deg(h) and d = or(p).

We'll show d|k and k|d, which imply d = k.

Since h is irreducible and p is prime,
Fp[z]/h(z) is a field.

The size of the field is pk.

Furthermore, (Fplz]/h(z))* is cyclic

Let g(z) be a generator of (Fplz]/h(z))*.

d divides k

h(z)|z" — 1, thus z" =1 (mod h(z)), it
implies that order of z in Fp[z]/h(x) divides r.
Since r is prime, the order is actually r.

Since g is a generator, the order of x should
divide the order of g, so we have r|p’c —1.
Thus, p* =1 (mod r).

Since d = or(p), we have d|k.

“Useful” Primes
(This terminology is not used in AKS)

n>3: odd

r . odd prime, GCD(n,r) =1

r is useful (in testing n's primality),
if r— 1 has a prime factor ¢ such that

1. ¢ >4y/rInn and
2. n(r=1/a£1 (mod r).

If r is useful, there is only one prime q
witnessing that r is useful;
also, glor(n) and op(n)|r — 1.

A prime r is semi-useful in testing n's

primality if » — 1 has a prime factor ¢ such
that ¢ > 4/rInn.
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k divides d

By (1), we have

9(90)”2E g(zP) (mod 172),
g(@)P = g(aP)P = g(2P") (mod p),

9@ = g P = gzP") (mod p).

Since d = o(p), p*=1 (mod r).

Then, by (2), 2*" =z (mod h(z)),

s0 g(z)"" = g(z) (mod h(z)).

This implies that g(z)**~1=1 (mod h(z)).
The order of g(z) is p* — 1, so pF — 1[p? — 1.
Letd=ks+ 2,0 <z < k. We have

(#-1) = (PF - D)@ F+pt 2k 4 A p?) pP -1

so z =0 and k|d. |
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The Algorithm
n1 iS a constant given later.

Input an odd integer n > nq
> Search for a Useful Prime
r< 3

while (r < n) do {

if r is prime then {
q < the largest prime factor of r — 1
if (¢ > [44/rInn]) and

RN R WNR

=
Q

r—r+2}
. > Binomial Power Test
for a < 1 to [2y/rilgn] do
if(x—a)"Zz" —a (modz”—1,n)
then output(“composite”)
> Prime Power Test
for k<~ 2 to |Inn/In3] do

T
NI A WN =

output(“prime")
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if GCD(n,r) # 1 then output(“composite”)

(n(r—l)/q #Z1 (mod r)) then break }

if (|nt/*|)¥ =n then output(“composite”)



Theorem 1 The above algorithm works
correctly and runs in time polynomial in logn.

The Proof Strategy

GOAL I The smallest useful prime
number is O(log®n).

GOAL II For all n > ny, given a useful
prime r, the two tests correctly decide
whether n is a prime.

GOAL III The algorithm has a polynomial
running time.
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Proof of Theorem 2

Let ¢; be any constant > 4% = 4096.
Let cp be any constant such that c3 defined
by c3 = 5070—2 — A% is positive.

Let ¢4 = 407\/25

Let ny; be the smallest integer m such that
(i) cpInSm > ng,
(ii) Inm > ¢p, and

(iii) (cq)2 < 2N,

Then, for all n > nq, (i)—(iii) hold with m = n.
Let T = [c1In®n,cyIn®n].

The Proof Strategy:

e Bound from below the # of semi-useful
primes in I.

e By counting argument show that one of

the semi-useful primes is actually useful.
15

Achieving Goal I

Theorem 2 (Jep,c0,n1)(Vn > nq)
The interval [c1In® n,cp In®n] contains a prime
that is useful in testing n’s primality.

Two useful lemmas.

Lemma 1 [Fouvry '85]  (3cg,ng)(Vx > ng)

Hp|p <=z Apisaprime Ap—1 has a prime
2

factor > z3}| > coz/Inx

Lemma 2 [Apostol '97] For alln > 1,

n
6lnn
where w(n) is the number of primes < n.

8n
< < —
<n(n) < 22

(Apostol '76 gave a better upper bound 2%
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# of Semi-Useful Primes in I > 7

Since (i) holds, Lemma 1 can be applied.

# of primes r < ¢y In®n(=z) such that r — 1
2

has a prime factor > r3 is at least

6

coIn®n

> co 2 6
In(coIn® n)

_ 0002|n6n
Inco+6Ininn

By (ii), Inlnn > Incy. So, this is at least

COCanG’n
7Ininn ~

16



OTOH

the # of primes r such that r < ¢1Inn
is equal to m(c1 In®n).

By Lemma 2, this is

8c1In®n
~ In(cy In%n)

_ 8c11Inn
" lnep+6Ininn

801|n6n_461|n6n
= 6Ilninn ~ 3Ininn’
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All t € T satisfy t > ¢; In®n.
1
Since ¢; > 4%, we have t6 > 4Inn.
2 1
For all z > 0, 23 = z64/z.

We counted primes r € I, for which the
largest prime factor ¢ of r — 1 satisfies

2 1
q>r3=r6yr>4/rinn.

This implies that
the # of semi-useful primes in I is

C3In6n

~ Inlnn’
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By combining the two bounds,
the # of prime52r € I such that »r—1 has a
prime factor > r3 is

coco I n 4cq In6n
7Ininn 3Ininn

_<0002 4cl> In%n
A7 3 /Ininn

_ C3In6n
Ininn
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# of “Useless” Primes < 7

Let M = |c4In?n|. Define
v= J] (n'-1).

1<i<M

Then # of odd prime factors of W is less than

Inw= Y In(n-1).

1<i<M
(Vi > 1)[In(n* — 1) < ilnn]
(Vd > D[S (1<icayi = d(d 4+ 1)/2 < d?]
So, the # of odd prime factors of W is
<M2Inn < (04)2 In®n
and by (iii)

C3In6n

Inlnn
Thus, there is a semi-useful prime r e [
such that r f Ww.

20



We now claim that such
semi-useful primes are actually useful.

r : semi-useful primein I, r Jf W
q . the largest prime factor of r — 1
q>4yrinn.

Assume r is not useful, i.e. ¢ [} or(n).
Since r is prime, or(n)|r — 1.
Since ¢ is prime and q f or(n), or(n)|%_

Since ¢1In%n < r < ¢y Inn and
q > 44/rInn, we have

r—1
<
q
c2ln6n _

44/(c1In®n) Inn

{4\0/25“1274 = {C4In2nJ = M.
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Achieving Goal II

We need to show the following:

Theorem 3 Letn >nq be a prime. Then n
passes the Binomial Power Test and the
Prime Power Test.

Theorem 4 Letn >nq be an odd
composite number. If n passes through the
Binomial Power Test (passes lines 1-14,
enters line 15), then n is a prime power.

23

Now
or(n)|™=L and =L < M
q q
imply that r divides at least one of
n—l,n2—1,...,nM—1,

and thus r|W, which is a contradiction.

Hence, qlor(n) and so r is useful.
This proves Theorem 2.
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Proof of Theorem 3

n . a prime number > nq
r . the useful prime selected by the algorithm
q : the witness of r's usefulness

4 /rinn<g<r<n

So, by line (5) of the algorithm, for all a,

1 <a<[2y/rlgn], GCD(n,a) = 1.

Thus, by the Basic Congruence
(z—a)"=2"—-a (modn)

The equivalence still holds if the polynomials

are reduced by taking modulo z" — 1.

So, n passes the Binomial Power Test.

Prime n must pass the Prime Power Test.
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After Line 14

Proof of Theorem 4
Let h(xz) be an irreducible polynomial

. T_l
n : odd composite number > ny in Fplz], such that h(z)|Z=-
r : the useful prime selected by the algorithm Set d =deg(h) and £ = [2,/rlgn].
q : the prime witnessing that r is useful By (3) of Proposition 1, d = or(p).
p1,---,p¢ - all distinct prime divisors of n Suppose n passes the Binomial Power Test.

Then
For each i, 1 < <t, since GCD(r,p;) =1,
we can let \; = or(p;). e Wa:1<a<¥)

_ n = ,n__ r_
Define Ag = LCM(Aq, ..., A). (z—a)"=2"—a (modaz"—1,n).
i . Xo —
Foralli, 1<i<t p;°=1 (modr). Since h(z)|z" — 1 and p|n, we have
So, n* =1 (mod r), and thus, or(n)|Ag-

Since ¢ is prime and glor(n), e (Va:1<a<¥)

(Fi:1<i<t)[q| NI (z—a)"=2"—a (mod h(z),p).
Choose any such i and let p = p;. GCD(”leSiST i) =1 and r > ¢ imply that
p> £, and thus 1,...,¢ are pairwise distinct
modulo p.
25 26

Proof of Proposition 2

A Cyclic Group of Polynomials It is known fact that every multiplicative
subgroup of a field is cyclic.

Define G to be the set of all polynomials in G is a subset of the field Fp[z]/h(z) and is a

(Fp[z]/h(z))* of the form group (closed under multiplication).

(z— 1) ...(z — £) So, G is a cyclic group.
Let g(z) be a generator of G.
such that ay,...,a, are nonnegative integers. g(z) has order €.
£
Proposition 2 We need to show that Q > (%) .
G is a cyclic multiplicative group of order 2,

and Define S C G to be the set of all polynomials
o> <e+ d— 1)4 in (Fplz]/h(x))* of the form

L
(z—1)%1...(z — )™

such that aq,...,0y are nonnegative and
a1+ +ay<d-—1.

27 28



We will claim that distinct sequences
a1, - +,ap in the definition lead to different
elements of S. Once the claim is proved,
using

+1
z+1<%for0<y<a:,

we can observe that for d > 1

o l+d-1y
si=(C", )=
L+d—-1 ¢4+d—2 £4+d—3 g>
¢ -1 (=2 1
(z+d—1)4

E 9

which will finish the proof of Proposition 2.
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Proving the Claim (cont’d)

Then we have

[I @G-a)= [ (z—a)’a (mod h(z),p),
1<a<t 1<a<?

or,

1 @—a)®— J] (@—a)’=0 (mod h(z),p).

1<a<t 1<a<t

The roots of LHS : the a's such that o, > 0.
The roots of RHS : the a's such that 3} > 0.
The intersection of the two sets is empty.

If one of them is nonempty, we have a
nonzero polynomial of degree < d— 1 that is
congruent to 0 modulo h(z).

That's a contradiction since h is irreducible.
So, both are empty, i.e.

a'l,...,alg,ﬁll,...,ﬁézo.
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Proving the Claim. Let
v(z) =(zr—1)% .- (z — £)* and
w(z) = (z—1)P1... (z — 0)Pe

be two polynomials in S such that
(*) v(z) =w(z) (mod h(z),p).

For each a, 1 <a </, let

® va = Min{ag, Ba},
. afl = aq — Ya, and
* B4, =Ba— Ya
Note that
e ag = [, implies of, =8, =0
e ag < fBq implies o/, =0
e ag > Bq implies B, =0

Since Fplz]/h(x) is a field, we can divide (*)
by ngage(l' —a)7e. 30

Reminder
qld = deg(h) = or(p), and or(p)|r — 1

z" —1 (mod p) factorizes into (z — 1) and
(r — 1)/d degree-d irreducible polynomials
hs(z), 1 <s < (r—1)/d, where h(z) is one of
them:

" —1=(x—1) 11 hs(z) (mod p)
1<s<(r=1)/d

Note also that
d>q>[4/rinn] > L= [2rlgn]
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Order of G

Observe that since d > 14+ 1 we have
(+d—1)/£>2, and use Ige < 2 (when
changing the base of logarithms).

Thus, by Proposition 2,

£+d71>52

Q=|G
o> (14

QZ Z (2Ig n)Q\/F Z ’I’l2\/F.

So, the order of g(z) in (Fplz]/h(z))* is
greater than n2vT.
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Hint:
r is very small, < c5Inn
Q is very large, > n2V7T

Lemma 3 For all my,mp € Ig, if mp = mo
(mod r), then m1 =ms (mod Q).

Proof of Lemma 3

Let mq,mp € 1.

Suppose that m; =mo (mod 7).

Let mo = mq 4 kr for some integer k > 0.

Since mo € Iy,
g(z)™mThr = g(2m2)  (mod 2" —1,p),

and thus, g(z)™ Tk = g(z™2) (mod h(z), p).

By (2) of Proposition 1,
g(a:ml‘H”) =g(z™1) (mod h(zx)), so
g(z™2) = g(z™1) (mod h(z),p).
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Set I

Define
Ig={m|g(z)™ =g(z™) (modz"—1,p)}.

Fact 1 I, is closed under multiplication.

Proof of the Fact

Assume mq, mop € Ig. Then
(@) g(x)™ =g(a¢™) (modz" —1,p)
(b) g(z)™2 = g(z™2) (mod z" — 1,p)

In (b), put z™1 in place of z. Then

g(z™)™m2 = g(z™™2) (mod z™1" — 1,p).

Now, since z" — 1|z™1" — 1

g(z™1)m2 = g(g™1™2) (mod z" — 1,p).

OTOH, by (a),

g(xz)m™im2 = g(z™1)™2 (mod z" — 1,p).

So, g(z)™™m2 = g(g™1™2) (mod z" —1,p).
34

Proof of Lemma 3 (cont’d)

Thus, by the latter and since m1,myp € Iy,
g(@™) = g(a™2) =
g(z)™2 = g(z)mMthr =
9(z)™g(x)"" =
9(@™)g(z)¥"  (mod h(z),p)
This implies g(z)*" =1 (mod h(z),p).

Thus, Q|kr.
Hence, mi = ms (mod ).
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n and p are members of I,

Our assumption is that (Va:1 <a < ¥)
[(z—a)*=2"—a (modz" —1,p)].

g(x) can be represented as a product of
factors (with multiplicities) chosen from
r—1l,x—2,...,0— 4.

Each term (xz — a) of g satisfies
[(z—a)*=2"—a (modaz" —1,p)].

Hence, any product of terms (z — a) also
does, and thus,

g(2)" =g(«") (modz" —1,p).
This implies that n € Ij,.

OTOH, by (1) of Proposition 1,

g(x)P = g(zP) (mod z" — 1,p),
and thus, p € I,.
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n must be a prime power

Since © > n2V" and
0 < (i1 —142), |1 — j2l < [V/7], then
nli1=i2) pli2=i1l « v < \/Q.
Qlp? -1, so GCD(L,p) = 1, and there exists
p~!t (mod Q). So, if jo > ji,
n172 = pl2=i1  (mod ),
and the congruence is actually an equality
ni1i2 = pi2—i1,
Note that i1 — ip = 0 iff jo — j1 = O,
SO i1 7 ip, and we have a prime power

J2=91
n =— p’1_12 .

If jo» < j1, we obtain a contradiction
Q>ni172pl172 =1 (mod Q).
This implies that n is a prime power,

and completes the proof of Theorem 4.
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n must be a prime power
Define E = {n'p/ | 0 <4,j < |V7]}.

By Fact 1, I, is closed under multiplication.
So, E C I,.

Consider exponents i1, J1,12,jo With the range
as in E. Since

|El= 1+ vr)? >,
by the pigeon-hole principle we have

(341, 51), (i2,52))
[ ((G1 #F42) V (J1 # 52)) A (i1 > i2)
An'ipllt = n*2pJ2  (mod r)].

Note that GCD(n,r) =1, so
n~1 (mod r) exists, and thus
n172pil = pi2  (mod r).
By Lemma 3,
ni172pil = p2  (mod Q).
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Achieving Goal III

Cost of the Search Phase
(lines 2-10)

r = O(log®n) bounds the number of rounds

If naive primality test for » and factorization
of r — 1 methods are used, each makes up to
V7 = O(log3n) rounds.

GCD (line 5) and exponentiation (line 9) are
done only once at each round, and are faster
than naive factoring of r — 1.

All arithmetic is done on numbers up to r.

Altogether, one round of the search loop
requires up to O((log*n)poly(logr)) steps, so
the search phase requires
0((10g1% n)poly(loglogn)) steps.
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Achieving Goal III, cont'd.

Cost of the Binomial Power Test
(lines 12-14)

In the Binomial Power Test the loop-body is
executed O(y/rlogn) times, which is the same
as O(log*n).

Using Fast Fourier Transform in Zy,
multiplication of two polynomials having
degree < r modulo a polynomial having
degree r can be done in

O(rlogrlogn) = O((log’ n)poly(logr))

steps.

If repeated squaring is used for powering,
a single test requires O((log® n)poly(logr))
steps.

Thus, the Binomial Power Test requires

O((log12 n)poly(loglogn)) steps.
41
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Cost of the Prime Power Test
(lines 16-17)

Prime Power Test makes O(logn) rounds.
If the binary search is used for root finding,
then one round of the Prime Power Test
requires only O(Iog3 n) steps.

Prime Power Test runs in time O(log® n).

Total Cost

Total running time is dominated by the
Binomial Power Test, and thus is bounded by

O((log*? n)poly(log logn)).

This completes the proof of Theorem 1.
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